
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465361/publications.pdf Version: 2024-02-01



FMIKO MOURI

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impacts of negatively charged colloidal clay particles on photoisomerization of both anionic and cationic azobenzene molecules. RSC Advances, 2022, 12, 10855-10861.                                                              | 3.6  | 3         |
| 2  | Preparation of Cellulose Nanocrystal Based Core-Shell Particles with Tunable Component Location.<br>Chemistry Letters, 2021, 50, 240-243.                                                                                         | 1.3  | 0         |
| 3  | Electrically Induced Alignment of Semiconductor Nanosheets in Niobate–Clay Binary Nanosheet<br>Colloids toward Significantly Enhanced Photocatalysis. Langmuir, 2021, 37, 7789-7800.                                              | 3.5  | 6         |
| 4  | The effects of graphene hybridization on mechanical properties of GFRP composites. AIP Conference Proceedings, 2021, , .                                                                                                          | 0.4  | 2         |
| 5  | Development of Structural Color by Niobate Nanosheet Colloids. Chemistry Letters, 2020, 49, 717-720.                                                                                                                              | 1.3  | 11        |
| 6  | Mesoscopic Architectures Made of Electrically Charged Binary Colloidal Nanosheets in Aqueous<br>System. Langmuir, 2019, 35, 14543-14552.                                                                                          | 3.5  | 8         |
| 7  | Electric-Alignment Immobilization of Liquid Crystalline Colloidal Nanosheets with the Aid of a<br>Natural Organic Polymer. Langmuir, 2019, 35, 7003-7008.                                                                         | 3.5  | 1         |
| 8  | Photoinduced electron transfer in semiconductor–clay binary nanosheet colloids controlled by clay particles as a turnout switch. Applied Catalysis B: Environmental, 2019, 241, 499-505.                                          | 20.2 | 10        |
| 9  | Association behaviors of poly(N-vinylpyrrolidone)-grafted fullerenes in aqueous solution. Journal of<br>Polymer Research, 2018, 25, 1.                                                                                            | 2.4  | 1         |
| 10 | Electrolyte-dependence of the macroscopic textures generated in the colloidal liquid crystals of<br>niobate nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556,<br>106-112.                  | 4.7  | 2         |
| 11 | Control of assembly size of poly (methacrylic acid)-grafted fullerenesÂin aqueous solution. Journal of<br>Polymer Research, 2018, 25, 1.                                                                                          | 2.4  | 2         |
| 12 | pH-Sensitive Adsorption Behavior of Polymer Particles at the Air–Water Interface. Langmuir, 2017, 33,<br>1451-1459.                                                                                                               | 3.5  | 23        |
| 13 | Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets<br>organized under electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects,<br>2017, 522, 373-381. | 4.7  | 9         |
| 14 | Fabrication of structure-preserving monodisperse particles of PMMA-grafted fullerenes. Fibers and Polymers, 2017, 18, 2261-2268.                                                                                                  | 2.1  | 7         |
| 15 | Flow-Induced Assembly of Colloidal Liquid Crystalline Nanosheets Toward Unidirectional<br>Macroscopic Structures. Journal of Nanoscience and Nanotechnology, 2016, 16, 2967-2974.                                                 | 0.9  | 4         |
| 16 | Photoinduced electron transfer between semiconducting nanosheets and acceptor molecules in the presence of colloidal clay particles. Applied Clay Science, 2016, 130, 76-82.                                                      | 5.2  | 2         |
| 17 | Deposition of plasmonic silver nanoparticles onto semiconducting oxide nanosheets and their photochromic behavior. Journal of the Ceramic Society of Japan, 2015, 123, 809-812.                                                   | 1.1  | 2         |
| 18 | Synergistic photocatalytic hydrogen evolution over oxide nanosheets combined with photochemically inert additives. Physical Chemistry Chemical Physics, 2015, 17, 5547-5550.                                                      | 2.8  | 14        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of sol–gel transition of clay colloids on the spectroscopic behavior of cationic dye adsorbed on the clay particles. Applied Clay Science, 2015, 118, 29-37.                                                                                      | 5.2 | 10        |
| 20 | Decomposition of a cyanine dye in binary nanosheet colloids of photocatalytically active niobate and inert clay. Journal of Materials Science, 2014, 49, 915-922.                                                                                         | 3.7 | 11        |
| 21 | Behavior of polymer chains grafted from latex particles at soft interfaces. Colloid and Polymer<br>Science, 2014, 292, 547-555.                                                                                                                           | 2.1 | 1         |
| 22 | Multiphase coexistence and destabilization of liquid crystalline binary nanosheet colloids of titanate and clay. Soft Matter, 2014, 10, 3161.                                                                                                             | 2.7 | 22        |
| 23 | Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals. Physical Chemistry Chemical Physics, 2014, 16, 955-962.                                                                             | 2.8 | 21        |
| 24 | Pickering Emulsions Prepared by Layered Niobate K <sub>4</sub> Nb <sub>6</sub> O <sub>17</sub><br>Intercalated with Organic Cations and Photocatalytic Dye Decomposition in the Emulsions. ACS<br>Applied Materials & Interfaces, 2012, 4, 4338-4347.     | 8.0 | 30        |
| 25 | Effect of Grafted Polymer Species on Particle Monolayer Structure at the Air–Water Interface.<br>Journal of Nanoscience and Nanotechnology, 2011, 11, 2486-2495.                                                                                          | 0.9 | 2         |
| 26 | Effects of particle volume fraction on distortion of particle-arrayed structure during immobilization<br>of colloidal crystals formed by poly(methyl methacrylate)-grafted silica in acetonitrile. Colloid and<br>Polymer Science, 2011, 289, 85-91.      | 2.1 | 7         |
| 27 | Incorporation of titanium dioxide particles into polymer matrix using block copolymer micelles for<br>fabrication of high refractive and transparent organic–inorganic hybrid materials. Journal of<br>Polymer Science Part A, 2011, 49, 712-718.         | 2.3 | 23        |
| 28 | Particle Monolayer Formation with Arrayed Structure by PMMA- <i>Grafted</i> Polystyrene Latex at the Air–Water Interface. Journal of Nanoscience and Nanotechnology, 2010, 10, 5838-5846.                                                                 | 0.9 | 4         |
| 29 | Effects of ferrocenyl group on refractive index of colloidal crystal system formed by polymer-grafted silica in organic solvent. Colloid and Polymer Science, 2010, 288, 519-525.                                                                         | 2.1 | 4         |
| 30 | Structural estimation of particle arrays at air–water interface based on silica particles with<br>wellâ€defined and highly grafted poly(methyl methacrylate). Polymer Engineering and Science, 2010, 50,<br>1067-1074.                                    | 3.1 | 4         |
| 31 | Crystallization of titania ultra-fine particles from peroxotitanic acid in aqueous solution in the present of polymer and incorporation into poly(methyl methacylate) via dispersion in organic solvent. Colloid and Polymer Science, 2009, 287, 139-146. | 2.1 | 15        |
| 32 | X-Ray Reflectometry Confirms Polymer- <l>Grafted</l> Silica Particle Monolayer Formation<br>at the Air–Water Interface. Journal of Nanoscience and Nanotechnology, 2009, 9, 327-333.                                                                      | 0.9 | 4         |
| 33 | Critical Brush Density for the Transition between Carpet-Only and Carpet/Brush Double-Layered<br>Structures. 2. Hydrophilic Chain Length Dependence. Macromolecules, 2007, 40, 766-769.                                                                   | 4.8 | 11        |
| 34 | Colloidal crystallization of colloidal silica modified with ferrocenyl group-contained polymers in organic solvents. Colloids and Surfaces B: Biointerfaces, 2007, 54, 108-113.                                                                           | 5.0 | 8         |
| 35 | Evaluation of Small Ion Distribution in the Polyelectrolyte Brush at the Air/Water Interface by<br>Neutron Reflectometry. Transactions of the Materials Research Society of Japan, 2007, 32, 297-302.                                                     | 0.2 | 1         |
| 36 | Formation of Submicron Scale Particles of Narrow Size Distribution from a Water-Soluble Dendrimer with Links to Porphyrins and a Fullerene. Macromolecules, 2006, 39, 1607-1613.                                                                          | 4.8 | 18        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Particle monolayer formation at the air-water interface by silica particle with well-defined grafted polymer. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2789-2797.                                      | 2.1 | 6         |
| 38 | Immobilization of colloidal crystals, formed by polymer-grafted silica in organic solvent, in physical gels. Colloid and Polymer Science, 2006, 284, 694-698.                                                                | 2.1 | 5         |
| 39 | Structural and morphological changes of monolayers of a block copolymer with dendron and<br>perfluoroalkyl side chains by mixing a perfluorooctadecanoic acid. Journal of Nanoscience and<br>Nanotechnology, 2006, 6, 36-42. | 0.9 | 0         |
| 40 | Controlled Crystallization of Ultrafine Titanium Dioxide Particles in the Presence of Hydrophilic or Amphiphilic Polymer from Peroxotitanic Acid. Chemistry Letters, 2005, 34, 1094-1095.                                    | 1.3 | 8         |
| 41 | Imaging of Polyelectrolyte Brushes at the Air/Water Interface by Reflectometry. Kobunshi Ronbunshu,<br>2005, 62, 449-457.                                                                                                    | 0.2 | 0         |
| 42 | Stepwise Controlled Immobilization of Colloidal Crystals Formed by Polymer-Grafted Silica Particles.<br>Langmuir, 2005, 21, 4471-4477.                                                                                       | 3.5 | 37        |
| 43 | Critical Brush Density for the Transition between Carpet-Only and Carpet/Brush Double-Layered Structures1. Langmuir, 2005, 21, 6842-6845.                                                                                    | 3.5 | 13        |
| 44 | Nanostructure of a "Carpet―like Dense Layer/Polyelectrolyte Brush Layer in a Block Copolymer<br>Monolayer at the Airâ^'Water Interface. Langmuir, 2005, 21, 1840-1847.                                                       | 3.5 | 22        |
| 45 | Preparation of poly(methyl methacrylate) films containing silica particle array structure from colloidal crystals. Colloid and Polymer Science, 2004, 283, 340-343.                                                          | 2.1 | 9         |
| 46 | Hydrophilic Chain Length Dependence of the Ionic Amphiphilic Polymer Monolayer Structure at the<br>Air/Water Interface. Langmuir, 2004, 20, 8062-8067.                                                                       | 3.5 | 27        |
| 47 | Effect of Salt Concentration on the Nanostructure of Weak Polyacid Brush in the Amphiphilic<br>Polymer Monolayer at the Air/Water Interface. Langmuir, 2004, 20, 10604-10611.                                                | 3.5 | 36        |
| 48 | Nanostructure of Polymer Monolayer by X-Ray and Neutron Reflectometry. Kobunshi, 2004, 53, 486-489.                                                                                                                          | 0.0 | 0         |
| 49 | Effect of pH on the nanostructure of an amphiphilic carbosilane/methacrylic acid block copolymer at air/water interface. Journal of Applied Crystallography, 2003, 36, 722-726.                                              | 4.5 | 21        |
| 50 | Carpetlike dense-layer formation in a polyelectrolyte brush at the air/water interface. Journal of<br>Polymer Science, Part B: Polymer Physics, 2003, 41, 1921-1928.                                                         | 2.1 | 23        |
| 51 | Polymer Micelle Formation without Gibbs Monolayer Formation:Â Synthesis and Characteristic<br>Behavior of an Amphiphilic Diblock Copolymer Having Strong Acid Groups. Macromolecules, 2003, 36,<br>5321-5330.                | 4.8 | 44        |
| 52 | Fabrication of Nano-structure by Diels–Alder Reaction. Chemistry Letters, 2002, 31, 886-887.                                                                                                                                 | 1.3 | 13        |
| 53 | Nanostructure of a Photochromic Polymer/Liquid Crystal Hybrid Monolayer on a Water Surface<br>Observed by in Situ X-ray Reflectometry. Langmuir, 2002, 18, 3875-3879.                                                        | 3.5 | 16        |
| 54 | Nanostructure of Fullerene-Bearing Artificial Lipid Monolayer on Water Surface by in Situ X-ray<br>Reflectometry. Langmuir, 2002, 18, 10042-10045.                                                                           | 3.5 | 16        |

| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | X-ray Reflectivity Study of Anionic Amphiphilic Carbosilane Block Copolymer Monolayers on a Water<br>Surface. Langmuir, 2002, 18, 3865-3874.                                                                                                                                               | 3.5 | 23        |
| 56 | Synthesis of anionic amphiphilic carbosilane block copolymer:<br>Poly(1,1-diethylsilacyclobutane-block-methacrylic acid). Journal of Polymer Science Part A, 2001, 39,<br>86-92.                                                                                                           | 2.3 | 15        |
| 57 | Dynamics on Molecular Films. The Application of the X-ray Reflectometry to the Monolayer Adsorbed at the Air-Water Interface Hyomen Kagaku, 2000, 21, 615-622.                                                                                                                             | 0.0 | 0         |
| 58 | The Importance of a Direct in Situ Evaluation of an Amphiphilic Diblock Copolymer Monolayer. The<br>Similarity and Difference between Its Nanostructures on Water and on Solid Substrates Examined by<br>X-ray Reflectometry and Atomic Force Microscopyâ€. Langmuir, 1999, 15, 4295-4301. | 3.5 | 15        |