Yuanfei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465196/publications.pdf

Version: 2024-02-01

79	1,827 citations	236612 25 h-index	315357 38 g-index
papers	Citations	II-IIIdex	g-muex
81 all docs	81 docs citations	81 times ranked	1107 citing authors

#	Article	IF	CITATIONS
1	Optimizing the local microstructure and mechanical properties of variable section particulate reinforced titanium matrix composites component based on numerical simulation and isothermal forming. Materials Science & Degrate and Processing, 2022, 829, 142161.	2.6	4
2	Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites. Journal of Materials Science and Technology, 2022, 110, 1-13.	5.6	25
3	Visual assessment of special rod-like $\hat{l}\pm$ -Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites. Composites Part B: Engineering, 2022, 230, 109511.	5.9	25
4	Novel strategy of planting nano-TiB fibers with ultra-fine network distribution into Ti-composite powder and its thermal transition mechanism. Composites Communications, 2022, 29, 101002.	3.3	12
5	Configuration of new fiber-like structure driven high matching of strength-ductility in TiB reinforced titanium matrix composites. Composites Part B: Engineering, 2022, 231, 109564.	5.9	31
6	Superior superplasticity and multiple accommodation mechanisms in TiB reinforced near- \hat{l}_{\pm} titanium matrix composites. Composites Part B: Engineering, 2022, 238, 109940.	5.9	21
7	Enhanced strength-ductility synergy in fiber-like structural titanium matrix composites by controlling TiB content. Journal of Alloys and Compounds, 2022, 915, 165399.	2.8	6
8	In-situ investigation on the anisotropic behavior of the additively manufactured dual-phase Ti-6Al-4V alloy. Materials Characterization, 2022, 189, 112003.	1.9	5
9	Simultaneously improving the strength and ductility of the as-sintered (TiB+La2O3)/Ti composites by in-situ planting ultra-fine networks into the composite powder. Scripta Materialia, 2022, 218, 114835.	2.6	14
10	TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting. Materials Science & Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140137.	2.6	35
11	The Formation of $\$$ left{ $\{10ar\{1\}2\}$ ight} $\$$ Deformation Twin in Hybrid TiB-TiC Reinforced Titanium Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 350-363.	1.1	1
12	Understanding the High-Temperature Fatigue Crack Growth from Exceptional Nano- $\hat{l}\pm$ Phases and $\{10\$\$$ ar $\{1\}$ \$\$2} Deformation Twins in Hot Deformed Titanium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1212-1231.	1.1	3
13	Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Composites Part B: Engineering, 2021, 211, 108683.	5.9	70
14	Microstructures and mechanical properties of hot indirect extruded in situ (TiBÂ+ÂTiC)/Ti6Al4V composites: Effect of extrusion temperature. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 140988.	2.6	19
15	Roles of reinforcements in twin nucleation and nano-α precipitation in the hybrid TiB/TiC-reinforced titanium matrix composites during high-temperature fatigue. Scripta Materialia, 2021, 196, 113758.	2.6	26
16	Columnar to equiaxed grain transition of laser deposited Ti6Al4V using nano-sized B4C particles. Composites Part B: Engineering, 2021, 212, 108667.	5.9	33
17	The impact of matrix texture and whisker orientation on property anisotropy in titanium matrix composites: Experimental and computational evaluation. Composites Part B: Engineering, 2021, 212, 108682.	5.9	31
18	Controllable mechanical anisotropy of selective laser melted Ti6Al4V: A new perspective into the effect of grain orientations and primary grain structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142031.	2.6	19

#	Article	IF	Citations
19	The Low-Cycle Fatigue Behavior, Failure Mechanism and Prediction of SLM Ti-6Al-4V Alloy with Different Heat Treatment Methods. Materials, 2021, 14, 6276.	1.3	12
20	Synergistic strengthening behavior and microstructural optimization of hybrid reinforced titanium matrix composites during thermomechanical processing. Materials Characterization, 2020, 168, 110527.	1.9	12
21	Particulate induced dynamic globularization/recrystallization and unique superplasticity in TiB/near-α Ti matrix composites. Materials Characterization, 2020, 167, 110458.	1.9	14
22	Deformation and fracture behavior of in-situ Ti composites reinforced with TiB/nano-sized particles. MATEC Web of Conferences, 2020, 321, 08004.	0.1	0
23	Temperature sensitivity of mechanical properties and microstructure during moderate temperature deformation of selective laser melted Ti-6Al-4V alloy. Materials Characterization, 2020, 165, 110342.	1.9	16
24	Understanding the Role of Multi-scale Reinforcements on Severe Plastic Deformation of Titanium Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1732-1743.	1.1	4
25	Texture Evolution and Dynamic Recrystallization Behavior of Hybrid-Reinforced Titanium Matrix Composites: Enhanced Strength and Ductility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2276-2290.	1.1	16
26	Multi-scale reinforcements stimulated dynamic recrystallization and mechanical behavior of as-extruded titanium matrix composites. MATEC Web of Conferences, 2020, 321, 08005.	0.1	0
27	Development of constitutive equations for hot working of titanium matrix composites. MATEC Web of Conferences, 2020, 321, 03033.	0.1	0
28	Microstructural evolution in titanium matrix composites processed by multi-pass equal-channel angular pressing. Journal of Materials Science, 2019, 54, 7931-7942.	1.7	6
29	Effect of Heat Treatment on Creep Properties of in situ Synthesized (TiB+La2O3)/Ti Composite. Frontiers in Materials, 2019, 6, .	1.2	3
30	Compressive response and microstructural evolution of bimodal sized particulates reinforced (TiB+La2O3)/Ti composites. Journal of Alloys and Compounds, 2018, 732, 524-535.	2.8	18
31	Effect of temperature on microstructure and mechanical properties of ECAPed (TiB + La2O3)/Ti-6Al-4V composites. Materials Characterization, 2018, 146, 149-158.	1.9	15
32	Isothermal deformation and spheroidization mechanism of (TiB + La2O3)/Ti composites with different initial structures. Materials Characterization, 2018, 146, 15-24.	1.9	18
33	Response relationship between loading condition and corrosion fatigue behavior of nickel-aluminum bronze alloy and its crack tip damage mechanism. Materials Characterization, 2018, 144, 356-367.	1.9	19
34	Effects of microstructure on the stress corrosion cracking behavior of nickel-aluminum bronze alloy in 3.5% NaCl solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 361-373.	2.6	35
35	Strengthening mechanism of friction stir processed and post heat treated NiAl bronze alloy: Effect of rotation rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 439-446.	2.6	47
36	Effects of extrusion ratio on microstructural evolution and mechanical behavior of in situ synthesized Ti-6Al-4V composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 155-163.	2.6	35

#	Article	IF	Citations
37	Effect of Microstructures on Fatigue Crack Growth Behavior of Friction Stir Processed NiAl Bronze Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1121-1132.	1.1	14
38	Microstructure characteristics of ECAP-processed (TiBÂ+ÂLa2O3)/Ti-6Al-4V composites. Journal of Alloys and Compounds, 2017, 726, 57-66.	2.8	13
39	Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites. Journal of Materials Science and Technology, 2017, 33, 1165-1171.	5.6	41
40	The effect of severe plastic deformation on the microstructure and mechanical properties of (TiB+TiC) reinforced titanium matrix composites. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012030.	0.3	2
41	Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiBÂ+ÂTiCÂ+ÂLa 2 O 3)/Ti6Al4V composites. Journal of Alloys and Compounds, 2017, 699, 874-881.	2.8	49
42	Enhanced Ductility of <i>In Situ</i> Synthesized (TiB+La ₂ O ₃)/IMI834 Composite by TRIPLEX Heat Treatment. Materials Transactions, 2016, 57, 1691-1697.	0.4	3
43	Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 317-325.	2.6	48
44	Effect of solid carburization on surface microstructure and hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti-6Al-4V composite. Transactions of Nonferrous Metals Society of China, 2016, 26, 1871-1877.	1.7	26
45	Investigation of the Effect of Argon Arc Welding Parameters on Properties of Thin Plate of <i>In Situ</i> Itanium Matrix Composites. Materials Science Forum, 2016, 849, 436-442.	0.3	1
46	Study on the Hot Processing Parameters-Impact Toughness Correlation of Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, 2016, 25, 1741-1748.	1.2	5
47	Configuration design and fabrication of laminated titanium matrix composites. Materials and Design, 2016, 99, 219-224.	3.3	45
48	Influences of heat treatment on fatigue crack growth behavior of NiAl bronze (NAB) alloy. Journal of Materials Research, 2015, 30, 3041-3048.	1.2	17
49	Investigation of the Microstructure and Corrosion Properties of Friction Stir Processed Cast NiAl Bronze. Materials Transactions, 2015, 56, 1523-1529.	0.4	13
50	Fabrication and characterization of laminated Ti-(TiB+La 2 O 3)/Ti composite. Progress in Natural Science: Materials International, 2015, 25, 453-459.	1.8	14
51	Investigation on the Microstructure of Direct Laser Additive Manufactured Ti6Al4V Alloy. Materials Research, 2015, 18, 24-28.	0.6	20
52	Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy. Journal of Materials Engineering and Performance, 2015, 24, 1754-1762.	1,2	22
53	Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree. Materials Science & Droperties, Microstructure and Processing, 2015, 643, 17-24.	2.6	58
54	Flow behavior and processing map of forging commercial purity titanium powder compact. Journal of Materials Research, 2015, 30, 1056-1064.	1.2	5

#	Article	IF	CITATIONS
55	Quantitative analysis of the effect of α-phase on mechanical property of Ti-6Al-4V alloy during hot working process. International Journal of Modern Physics B, 2015, 29, 1540012.	1.0	2
56	Effect of ECAP numbers on microstructure and properties of titanium matrix composite. Materials & Design, 2015, 75, 113-119.	5.1	52
57	Characterization of the diffusion bonding behavior of pure Ti and Ni with different surface roughness during hot pressing. Materials & Design, 2015, 65, 1001-1010.	5.1	39
58	Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti–Ni systems. Journal of Materials Research, 2014, 29, 2707-2716.	1.2	27
59	Modeling the relationship between hydrogen content and mechanical property of Ti600 alloy by using ANFIS. Applied Mathematical Modelling, 2013, 37, 5705-5714.	2.2	13
60	Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterion. Intermetallics, 2012, 20, 1-7.	1.8	83
61	Determination of the influence of processing parameters on the mechanical properties of the Ti–6Al–4V alloy using an artificial neural network. Computational Materials Science, 2012, 60, 239-244.	1.4	43
62	Intelligent method to develop constitutive relationship of Ti–6Al–2Zr–1Mo–1V alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1457-1461.	1.7	8
63	Prediction of the mechanical properties of forged Ti–10V–2Fe–3Al titanium alloy using FNN. Computational Materials Science, 2011, 50, 1009-1015.	1.4	21
64	Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm. Computational Materials Science, 2011, 50, 1064-1069.	1.4	26
65	An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Computational Materials Science, 2011, 50, 2273-2279.	1.4	29
66	Constructing processing map of Ti40 alloy using artificial neural network. Transactions of Nonferrous Metals Society of China, 2011, 21, 159-165.	1.7	20
67	The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8410-8416.	2.6	36
68	Modeling the correlation between microstructure and the properties of the Ti–6Al–4V alloy based on an artificial neural network. Materials Science & Discrete amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8757-8764.	2.6	42
69	Optimization of forging process parameters of Ti600 alloy by using processing map. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 2011, 529, 393-400.	2.6	41
70	Prediction of flow stress in isothermal compression of Ti60 alloy using an adaptive network-based fuzzy inference system. Materials & Design, 2011, 32, 4676-4683.	5.1	26
71	Development of a database system for operational use in the selection of titanium alloys. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 444-449.	2.4	2
72	Prediction of Tensile Property of Hydrogenated Ti600 Titanium Alloy Using Artificial Neural Network. Journal of Materials Engineering and Performance, 2011, 20, 335-340.	1,2	14

Yuanfei

#	Article	IF	CITATION
73	Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map. Materials Science & Define and Processing, 2011, 528, 1757-1763.	2.6	117
74	A study on the prediction of mechanical properties of titanium alloy based on adaptive fuzzy-neural network. Materials & Design, 2011, 32, 3354-3360.	5.1	7
75	Modeling of constitutive relationship of Ti–25V–15Cr–0.2Si alloy during hot deformation process by fuzzy-neural network. Materials & Design, 2010, 31, 4380-4385.	5.1	30
76	Development of constitutive relationship model of Ti600 alloy using artificial neural network. Computational Materials Science, 2010, 48, 686-691.	1.4	98
77	Modeling of Helical Gear Power Tri-Branching Transmission Based on Loaded Tooth Contact Analysis. Applied Mechanics and Materials, 0, 372, 543-546.	0.2	0
78	Analysis of Power-Split for the Transmission System Based on Deformation Compatibility. Applied Mechanics and Materials, 0, 441, 291-294.	0.2	1
79	Influence of Post Heat Treatment on Microstructure and Mechanical Property of Ti6Al4V Parts Produced by Selective Laser Melting. Materials Science Forum, 0, 898, 1312-1317.	0.3	4