SeÃ;n T Barry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246500/publications.pdf Version: 2024-02-01

SFÃ:N T RADDV

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Copper(I) Amidinates as Precursors for Atomic Layer Deposition (ALD) of Copper Metal. Inorganic Chemistry, 2005, 44, 1728-1735.	1.9	151
2	Amidinates, guanidinates and iminopyrrolidinates: Understanding precursor thermolysis to design a better ligand. Coordination Chemistry Reviews, 2013, 257, 3192-3201.	9.5	100
3	Theoretical and Synthetic Investigations of Carbodiimide Insertions into Alâ^'CH3and Alâ^'N(CH3)2Bonds. Inorganic Chemistry, 2005, 44, 1983-1991.	1.9	96
4	Atomic Layer Deposition of Gold Metal. Chemistry of Materials, 2016, 28, 44-46.	3.2	88
5	The Insertion of Carbodiimides into Al and Ga Amido Linkages. Guanidinates and Mixed Amido Guanidinates of Aluminum and Gallium. Inorganic Chemistry, 2005, 44, 2926-2933.	1.9	79
6	Synthesis and Thermal Chemistry of Copper (I) Guanidinates. Inorganic Chemistry, 2008, 47, 683-689.	1.9	72
7	Principles of precursor design for vapour deposition methods. Polyhedron, 2016, 108, 59-66.	1.0	66
8	Trends in Copper Precursor Development for CVD and ALD Applications. ECS Journal of Solid State Science and Technology, 2015, 4, N3188-N3197.	0.9	57
9	Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating. Optics Letters, 2015, 40, 1713.	1.7	56
10	Synthesis and Thermolysis of Aluminum Amidinates:Â A Ligand-Exchange Route for New Mixed-Ligand Systems. Inorganic Chemistry, 2006, 45, 2276-2281.	1.9	50
11	Group 11 Amidinates and Guanidinates: Potential Precursors for Vapour Deposition. European Journal of Inorganic Chemistry, 2011, 2011, 3240-3247.	1.0	47
12	Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers. Optical Materials Express, 2011, 1, 128.	1.6	46
13	Deposition of Copper by Plasma-Enhanced Atomic Layer Deposition Using a Novel N-Heterocyclic Carbene Precursor. Chemistry of Materials, 2013, 25, 1132-1138.	3.2	46
14	Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles. Optics Express, 2013, 21, 245.	1.7	46
15	Gas-Phase Thermolysis of a Guanidinate Precursor of Copper Studied by Matrix Isolation, Time-of-Flight Mass Spectrometry, and Computational Chemistry. Inorganic Chemistry, 2010, 49, 2844-2850.	1.9	41
16	The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces. Accounts of Chemical Research, 2018, 51, 800-809.	7.6	41
17	Surfactant Directed Growth of Gold Metal Nanoplates by Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 6116-6124.	3.2	35
18	Recent Advances Using Guanidinate Ligands for Chemical Vapour Deposition (CVD) and Atomic Layer Deposition (ALD) Applications. Australian Journal of Chemistry, 2014, 67, 989.	0.5	32

#	Article	IF	CITATIONS
19	Atomic Layer Deposition of Aluminum Oxide Thin Films from a Heteroleptic, Amidinate-Containing Precursor. Chemistry of Materials, 2008, 20, 7287-7291.	3.2	31
20	Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths. Journal of Physical Chemistry C, 2014, 118, 670-678.	1.5	30
21	Preventing thermolysis: precursor design for volatile copper compounds. Chemical Communications, 2012, 48, 10440.	2.2	29
22	Theoretical and experimental investigations of ligand exchange in guanidinate ligand systems for group 13 metals. Dalton Transactions, 2007, , 3297.	1.6	26
23	Chemical vapour deposition of In2O3 thin films from a tris-guanidinate indium precursor. Dalton Transactions, 2011, 40, 9425.	1.6	26
24	Thermal Chemistry of Cu(I)-Iminopyrrolidinate and Cu(I)-Guanidinate Atomic Layer Deposition (ALD) Precursors on Ni(110) Single-Crystal Surfaces. Chemistry of Materials, 2013, 25, 3630-3639.	3.2	26
25	Atmospheric pressure chemical vapor deposition of electrochromic tungsten oxide films. Thin Solid Films, 2001, 392, 231-235.	0.8	25
26	Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions. Optics Express, 2014, 22, 31665.	1.7	25
27	A Family of Heteroleptic Titanium Guanidinates: Synthesis, Thermolysis, and Surface Reactivity. Inorganic Chemistry, 2010, 49, 1976-1982.	1.9	24
28	Thermally Robust Gold and Silver Iminopyrrolidinates for Chemical Vapor Deposition of Metal Films. Chemistry of Materials, 2013, 25, 4566-4573.	3.2	24
29	Study of Monomeric Copper Complexes Supported by <i>N</i> -Heterocyclic and Acyclic Diamino Carbenes. Organometallics, 2017, 36, 2800-2810.	1.1	24
30	Atom efficient cyclotrimerization of dimethylcyanamide catalyzed by aluminium amide: a combined experimental and theoretical investigation. Chemical Communications, 2008, , 3645.	2.2	21
31	Designated Molecular Deconstruction: The Facile Transformation of Ga(N(SiMe3)2)(OSiMe3)2py (py =) Tj ETQq1	1,0,7843 3.2	14.rgBT /O
32	Heteroleptic iminopyrrolidinates of aluminium. Dalton Transactions, 2010, 39, 9046.	1.6	20
33	Copper Iminopyrrolidinates: A Study of Thermal and Surface Chemistry. Inorganic Chemistry, 2013, 52, 910-917.	1.9	20
34	Passivation of Plasmonic Colors on Bulk Silver by Atomic Layer Deposition of Aluminum Oxide. Langmuir, 2018, 34, 4998-5010.	1.6	18
35	Designing Stability into Thermally Reactive Plumbylenes. Inorganic Chemistry, 2018, 57, 8218-8226.	1.9	18
36	Green CVD—Toward a sustainable philosophy for thin film deposition by chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	18

#	Article	IF	CITATIONS
37	Tris(dimethylamido)aluminum(III): An overlooked atomic layer deposition precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	17
38	Thermal atomic layer deposition of gold nanoparticles: controlled growth and size selection for photocatalysis. Nanoscale, 2020, 12, 9005-9013.	2.8	17
39	Atomic layer deposition of Cu with a carbene-stabilized Cu(<scp>i</scp>) silylamide. Journal of Materials Chemistry C, 2014, 2, 9205-9214.	2.7	16
40	The effect of ALD-grown Al ₂ O ₃ on the refractive index sensitivity of CVD gold-coated optical fiber sensors. Nanotechnology, 2015, 26, 434002.	1.3	16
41	Ligand-Assisted Volatilization and Thermal Stability of Bis(imido)dichloromolybdenum(VI) ([(<i>t</i> BuNâ•) ₂ MoCl ₂] ₂) and Its Adducts. Organometallics, 2020, 39, 916-927.	1.1	16
42	Atomic Layer Deposition of PbS Thin Films at Low Temperatures. Chemistry of Materials, 2020, 32, 8216-8228.	3.2	16
43	Cobalt Metal ALD: Understanding the Mechanism and Role of Zinc Alkyl Precursors as Reductants for Low-Resistivity Co Thin Films. Chemistry of Materials, 2021, 33, 5045-5057.	3.2	16
44	Preparation and characterization of mixed alkyl amido complexes of gallium. Journal of Organometallic Chemistry, 1996, 510, 103-108.	0.8	15
45	Thermally-Induced Transformations of Gallium and Indium Alkyl Phosphido Complexes:Â Dealkylsilylation Routes to MP (M = Ga, In). Organometallics, 1997, 16, 3588-3592.	1.1	15
46	Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors. Journal of Chemical Physics, 2017, 146, 052806.	1.2	15
47	Thermal Decomposition of Copper Iminopyrrolidinate Atomic Layer Deposition (ALD) Precursors on Silicon Oxide Surfaces. Journal of Physical Chemistry C, 2016, 120, 14149-14156.	1.5	14
48	Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy. Journal of Chemical Physics, 2017, 146, 052812.	1.2	14
49	Gallium Nitride Synthesis Using Lithium Metal as a Nitrogen Fixant. Chemistry of Materials, 1998, 10, 2571-2574.	3.2	13
50	Volatile Liquid Precursors for the Chemical Vapor Deposition (CVD) of Thin Films Containing Tungsten. Materials Research Society Symposia Proceedings, 2000, 612, 9121.	0.1	13
51	Thermal fragmentation of the guanidinato aluminum amide precursor [Me2NC(NiPr)2]Al(NMe2)2: An investigation of reactive species by matrix-isolation FTIR spectroscopy and time-of-flight mass spectrometry. Polyhedron, 2008, 27, 1832-1840.	1.0	13
52	Synthesis and solution decomposition kinetics of flash-vaporizable liquid Barium Beta-diketonates. Advanced Materials for Optics and Electronics, 2000, 10, 201-211.	0.6	12
53	Activation of the dimers and tetramers of metal amidinate atomic layer deposition precursors upon adsorption on silicon oxide surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	12
54	Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 37229-37238.	4.0	12

#	Article	IF	CITATIONS
55	In Situ Deposition Monitoring by a Tilted Fiber Bragg Grating Optical Probe: Probing Nucleation in Chemical Vapour Deposition of Gold. Physics Procedia, 2013, 46, 12-20.	1.2	11
56	Self-seeding gallium oxide nanowire growth by pulsed chemical vapor deposition. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1514-1518.	0.8	11
57	Controlling the Thermal Stability and Volatility of Organogold(I) Compounds for Vapor Deposition with Complementary Ligand Design. European Journal of Inorganic Chemistry, 2019, 2019, 4927-4938.	1.0	11
58	Work function of doped zinc oxide films deposited by ALD. Journal of Materials Research, 2020, 35, 756-761.	1.2	11
59	A Rare Low‧pin Co IV Bis(βâ€silyldiamide) with High Thermal Stability: Steric Enforcement of a Doublet Configuration. Angewandte Chemie - International Edition, 2020, 59, 14138-14142.	7.2	11
60	CVD on Optical Fibers: Tilted Fiber Bragg Gratings as Realâ€ŧime Sensing Platforms. Chemical Vapor Deposition, 2015, 21, 4-20.	1.4	10
61	Synthesis, Characterization, and Thermal Study of Divalent Germanium, Tin, and Lead Triazenides as Potential Vapor Deposition Precursors. Inorganic Chemistry, 2021, 60, 12759-12765.	1.9	10
62	Laser-written colours on silver: optical effect of alumina coating. Nanophotonics, 2019, 8, 807-822.	2.9	9
63	Metal-assisted chemical etching using sputtered gold: a simple route to black silicon. Science and Technology of Advanced Materials, 2011, 12, 045001.	2.8	8
64	Quantitative Surface Coverage Calculations via Solid-State NMR for Thin Film Depositions: A Case Study for Silica and a Gallium Amidinate. Journal of Physical Chemistry C, 2014, 118, 1618-1627.	1.5	8
65	Rational Design of Metalorganic Complexes for the Deposition of Solid Films: Growth of Metallic Copper with Amidinate Precursors. Chemistry of Materials, 2019, 31, 1681-1687.	3.2	8
66	Thermal Stability and Decomposition Pathways in Volatile Molybdenum(VI) Bis-imides. Inorganic Chemistry, 2022, 61, 4980-4994.	1.9	8
67	Crystal Structure of Dimerized 1,3-Diisopropyl Carbodiimide. Journal of Chemical Crystallography, 2011, 41, 375-378.	0.5	5
68	Methylamines as Nitrogen Precursors in Chemical Vapor Deposition of Gallium Nitride. Journal of Physical Chemistry C, 2019, 123, 6701-6710.	1.5	5
69	Ein seltenes Lowâ€Spinâ€Co IV â€Bis(βâ€silyldiamid) mit hoher thermischer Stabilitä Sterische Erzwingung einer Dublettkonfiguration. Angewandte Chemie, 2020, 132, 14242-14246.	1.6	4
70	Resolving Impurities in Atomic Layer Deposited Aluminum Nitride through Low Cost, High Efficiency Precursor Design. Inorganic Chemistry, 2021, 60, 11025-11031.	1.9	4
71	Thermal study of an indium trisguanidinate as a possible indium nitride precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	3
72	Chemists, It Is Time To Embrace Preprints. Chemistry of Materials, 2018, 30, 2859-2859.	3.2	3

#	Article	IF	CITATIONS
73	Lutetium coating of nanoparticles by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 022414.	0.9	3
74	Chemical vapor deposition of anisotropic ultrathin gold films on optical fibers: real-time sensing by tilted fiber Bragg gratings and use of a dielectric pre-coating. , 2014, , .		2
75	New Zr-containing precursors for the atomic layer deposition of ZrO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 013001.	0.9	2
76	Using a Vaporâ€Phase Surfactant to Control Gold Metal Plate Growth. Advanced Materials Interfaces, 2017, 4, 1600864.	1.9	2
77	Reaction mechanism of the Me ₃ AuPMe ₃ –H ₂ plasma-enhanced ALD process. Physical Chemistry Chemical Physics, 2020, 22, 11903-11914.	1.3	2
78	(tBuN)SiMe2NMe2—A new N,N′-κ2-monoanionic ligand for atomic layer deposition precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 032409.	0.9	2
79	Co(II) Amide, Pyrrolate, and Aminopyridinate Complexes: Assessment of their Manifold Structural Chemistry and Thermal Properties**. European Journal of Inorganic Chemistry, 2021, 2021, 5119-5136.	1.0	2
80	Modified 3D-printed architectures: Effects of coating by alumina on acrylonitrile butadiene styrene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 022407.	0.9	2
81	Monomeric Chelated Amides of Aluminum and Gallium: Volatile, Miscible Liquid Precursors for CVD. Materials Research Society Symposia Proceedings, 1999, 606, 83.	0.1	1
82	Goniocolorimetric study of aluminum oxide films deposited by atomic layer deposition. Thin Solid Films, 2012, 520, 2943-2948.	0.8	1
83	Anomalous refractive index of ultrathin gold nanoparticle film coated on tilted fiber Bragg grating. , 2014, , .		1
84	Novel copper compounds for vapor deposition: Characterization and thermolysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 01A116.	0.9	1
85	In Honor of Professor Markku LeskeläChemistry of Materials, 2018, 30, 4469-4474.	3.2	1
86	Volatile and Thermally Stable Polymeric Tin Trifluoroacetates. Inorganic Chemistry, 2020, 59, 996-1005.	1.9	1
87	Thermal ranges and figures of merit for gold-containing precursors for atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 022401.	0.9	1
88	Liquid Compounds for CVD of Alkaline Earth Metals. Materials Research Society Symposia Proceedings, 1999, 574, 23.	0.1	0
89	Plasmonic properties of copper nanoparticles deposited on tilted fiber bragg gratings. , 2011, , .		0
			_

#	Article	IF	CITATIONS
91	Optical Excitation of Metal Nanoparticles by Optical Fiber Cladding Mode Wavelength Combs. , 2013, , .		0
92	Monitoring of the Insulator-to-Metal Transition of Ultrathin Gold Coatings on Optical Fibers. , 2015, ,		0