
Javier Cepeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials. Coordination Chemistry Reviews, 2013, 257, 2716-2736.	9.5	81
2	Tuning the luminescence performance of metal–organic frameworks based on d ¹⁰ metal ions: from an inherent versatile behaviour to their response to external stimuli. CrystEngComm, 2016, 18, 8556-8573.	1.3	76
3	Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials, 2016, 28, 2519-2528.	3.2	68
4	Lanthanide(III)/Pyrimidine-4,6-dicarboxylate/Oxalate Extended Frameworks: A Detailed Study Based on the Lanthanide Contraction and Temperature Effects. Inorganic Chemistry, 2011, 50, 8437-8451.	1.9	60
5	Open-Framework Copper Adeninate Compounds with Three-Dimensional Microchannels Tailored by Aliphatic Monocarboxylic Acids. Inorganic Chemistry, 2011, 50, 5330-5332.	1.9	48
6	An Ideal Spin Filter: Long-Range, High-Spin Selectivity in Chiral Helicoidal 3-Dimensional Metal Organic Frameworks. Nano Letters, 2020, 20, 8476-8482.	4.5	47
7	Directing the Formation of Adenine Coordination Polymers from Tunable Copper(II)/Dicarboxylato/Adenine Paddle-Wheel Building Units. Crystal Growth and Design, 2012, 12, 3324-3334.	1.4	46
8	Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry, 2016, 55, 11230-11248.	1.9	46
9	Analysis of the Interaction between Adenine Nucleobase and Metalâ€Malonato Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 3889-3899.	1.0	45
10	Synthetic Control to Achieve Lanthanide(III)/Pyrimidine-4,6-dicarboxylate Compounds by Preventing Oxalate Formation: Structural, Magnetic, and Luminescent Properties. Inorganic Chemistry, 2012, 51, 7875-7888.	1.9	44
11	Porous supramolecular compound based on paddle-wheel shaped copper(ii)–adenine dinuclear entities. CrystEngComm, 2011, 13, 3301.	1.3	43
12	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	1.4	42
13	Coordination Polymers with Intriguing Photoluminescence Behavior: The Promising Avenue for Greatest Longâ€Lasting Phosphors. European Journal of Inorganic Chemistry, 2018, 2018, 2155-2174.	1.0	41
14	A Zn based coordination polymer exhibiting long-lasting phosphorescence. Chemical Communications, 2016, 52, 8671-8674.	2.2	40
15	Supramolecular Architectures and Magnetic Properties of Selfâ€Assembled Windmillâ€Like Dinuclear Copper(II) Complexes with Purine Ligands. European Journal of Inorganic Chemistry, 2009, 2009, 2344-2353.	1.0	34
16	Supramolecular architectures of metal–oxalato complexes containing purine nucleobases. Inorganica Chimica Acta, 2011, 365, 211-219.	1.2	34
17	Structure-Directing Effect of Organic Cations in the Assembly of Anionic In(III)/Diazinedicarboxylate Architectures. Crystal Growth and Design, 2012, 12, 1501-1512.	1.4	32
18	Modulating Anticancer Potential by Modifying the Structural Properties of a Family of Zinc Metal–Organic Chains Based on 4-Nitro-1 <i>H</i> -pyrazole. Crystal Growth and Design, 2018, 18, 969-978.	1.4	32

#	Article	IF	CITATIONS
19	Gas Adsorption Properties and Selectivity in Cull/Adeninato/Carboxylato Metal-Biomolecule Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5921-5933.	1.0	31
20	Exploiting Synthetic Conditions to Promote Structural Diversity within the Scandium(III)/Pyrimidine-4,6-dicarboxylate System. Crystal Growth and Design, 2015, 15, 2352-2363.	1.4	31
21	Enhancing luminescence properties of lanthanide(<scp>iii</scp>)/pyrimidine-4,6-dicarboxylato system by solvent-free approach. Dalton Transactions, 2015, 44, 6972-6986.	1.6	31
22	Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs. microwave heating. RSC Advances, 2014, 4, 60409-60412.	1.7	30
23	Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4′-dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	1.3	30
24	Influence of the Synthetic Conditions on the Structural Diversity of Extended Manganeseâ	1.9	29
25	Slow relaxation of magnetization in 3D-MOFs based on dysprosium dinuclear entities bridged by dicarboxylic linkers. CrystEngComm, 2016, 18, 3055-3063.	1.3	29
26	Alkaline-earth metal based MOFs with second scale long-lasting phosphor behavior. CrystEngComm, 2018, 20, 4793-4803.	1.3	29
27	From isolated to 2D coordination polymers based on 6-aminonicotinate and 3d-metal ions: towards field-induced single-ion-magnets. CrystEngComm, 2017, 19, 2229-2242.	1.3	28
28	Structural Diversity in a Copper(II)/Isophthalato/9-Methyladenine System. From One- to Three-Dimensional Metal-Biomolecule Frameworks. Crystal Growth and Design, 2013, 13, 3057-3067.	1.4	27
29	A Potassium Metal-Organic Framework based on Perylene-3,4,9,10-tetracarboxylate as Sensing Layer for Humidity Actuators. Scientific Reports, 2018, 8, 14414.	1.6	27
30	Strontium-Based MOFs Showing Dual Emission: Luminescence Thermometers and Toluene Sensors. Inorganic Chemistry, 2020, 59, 18432-18443.	1.9	27
31	Rational design of triple-bridged dinuclear Zn ^{II} Ln ^{III} -based complexes: a structural, magnetic and luminescence study. CrystEngComm, 2017, 19, 256-264.	1.3	26
32	Experimental and Theoretical Study of a Cadmium Coordination Polymer Based on Aminonicotinate with Second-Timescale Blue/Green Photoluminescent Emission. Inorganic Chemistry, 2017, 56, 3149-3152.	1.9	24
33	Porous M ^{II} /Pyrimidineâ€4,6â€Dicarboxylato Neutral Frameworks: Synthetic Influence on the Adsorption Capacity and Evaluation of CO ₂ â€Adsorbent Interactions. Chemistry - A European Journal, 2014, 20, 1554-1568.	1.7	22
34	Improving the performance of a poorly adsorbing porous material: template mediated addition of microporosity to a crystalline submicroporous MOF. Chemical Communications, 2012, 48, 907-909.	2.2	21
35	Alkaline-earth and aminonicotinate based coordination polymers with combined fluorescence/long-lasting phosphorescence and metal ion sensing response. Journal of Materials Chemistry C, 2019, 7, 6997-7012.	2.7	21
36	Influence of thermally induced structural transformations on the magnetic and luminescence properties of tartrate-based chiral lanthanide organic-frameworks. Journal of Materials Chemistry C, 2020, 8, 8243-8256.	2.7	21

#	Article	IF	CITATIONS
37	Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions. Inorganic Chemistry, 2017, 56, 13897-13912.	1.9	20
38	Photoluminescence and magnetic analysis of a family of lanthanide(<scp>iii</scp>) complexes based on diclofenac. New Journal of Chemistry, 2017, 41, 5467-5475.	1.4	19
39	Design and synthesis of a family of 1D-lanthanide-coordination polymers showing luminescence and slow relaxation of the magnetization. Dalton Transactions, 2018, 47, 12783-12794.	1.6	19
40	Photoluminescence Modulation in LanÂŧhanide(III)/Pyrazineâ€2,5â€dicarboxylato/Nitrato Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 4318-4328.	1.0	18
41	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
42	Low-Nuclearity MnII Complexes Based on Pyrimidine-4,6-dicarboxylato Bridging Ligand: Crystal Structure, Ion Exchange and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 68-77.	1.0	15
43	Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. CrystEngComm, 2015, 17, 7636-7645.	1.3	15
44	Structural and magnetic characterization of one-dimensional oxalato-bridged metal(II) complexes with 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole ligand: A supramolecular open-framework. Inorganica Chimica Acta, 2009, 362, 4212-4218.	1.2	14
45	Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate. Scientific Reports, 2020, 10, 8843.	1.6	14
46	Modulation of pore shape and adsorption selectivity by ligand functionalization in a series of "rob―like flexible metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 17409-17416.	5.2	13
47	Effect of the change of the ancillary carboxylate bridging ligand on the SMM and luminescence properties of a series of carboxylate-diphenoxido triply bridged dinuclear ZnLn and tetranuclear Zn2Ln2 complexes (Ln = Dy, Er). Dalton Transactions, 2019, 48, 190-201.	1.6	13
48	Photoluminescence Tuning and Water Detection of Yttrium Diazinedicarboxylate Materials through Lanthanide Doping. European Journal of Inorganic Chemistry, 2015, 2015, 2650-2663.	1.0	12
49	Chiral coordination polymers based on d ¹⁰ metals and 2-aminonicotinate with blue fluorescent/green phosphorescent anisotropic emissions. Dalton Transactions, 2018, 47, 8746-8754.	1.6	12
50	A novel yttrium-based metal–organic framework for the efficient solvent-free catalytic synthesis of cyanohydrin silyl ethers. Dalton Transactions, 2021, 50, 11720-11724.	1.6	11
51	Antiparasitic, anti-inflammatory and cytotoxic activities of 2D coordination polymers based on 1H-indazole-5-carboxylic acid. Journal of Inorganic Biochemistry, 2020, 208, 111098.	1.5	11
52	Modulating the MII/Pyrimidine-4,6-dicarboxylato System by Metal, Solvent and Temperature Variation. European Journal of Inorganic Chemistry, 2014, 2014, 3221-3234.	1.0	10
53	Efficient CO2 adsorption by Cu(II) acetate and itaconate bioproduct based MOF. Journal of Environmental Chemical Engineering, 2018, 6, 2910-2917.	3.3	10
54	Zinc/itaconate coordination polymers as first examples with long-lasting phosphorescence based on acyclic ligands. Journal of Materials Chemistry C, 2018, 6, 10870-10880.	2.7	10

#	Article	IF	CITATIONS
55	Enantiospecific Response in Cross-Polarization Solid-State Nuclear Magnetic Resonance of Optically Active Metal Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17989-17996.	6.6	10
56	Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid. Journal of Inorganic Biochemistry, 2021, 215, 111308.	1.5	10
57	Magneto-structural correlations of <i>cyclo</i> -tetravanadates functionalized with mixed-ligand copper(<scp>ii</scp>) complexes. New Journal of Chemistry, 2021, 45, 5081-5092.	1.4	10
58	An enantiomeric pair of alkaline-earth metal based coordination polymers showing room temperature phosphorescence and circularly polarized luminescence. Journal of Materials Chemistry C, 2021, 9, 5544-5553.	2.7	10
59	Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands. Journal of Molecular Structure, 2015, 1089, 135-145.	1.8	9
60	Interpenetrated Luminescent Metal–Organic Frameworks based on 1 <i>H</i> -Indazole-5-carboxylic Acid. Crystal Growth and Design, 2020, 20, 4550-4560.	1.4	9
61	Modulating Magnetic and Photoluminescence Properties in 2â€Aminonicotinateâ€Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry - A European Journal, 2020, 26, 13484-13498.	1.7	8
62	2D-Coordination polymers based on 1 <i>H</i> -indazole-4-carboxylic acid and transition metal ions: magnetic, luminescence and biological properties. CrystEngComm, 2020, 22, 5086-5095.	1.3	8
63	Designing Single-Molecule Magnets as Drugs with Dual Anti-Inflammatory and Anti-Diabetic Effects. International Journal of Molecular Sciences, 2020, 21, 3146.	1.8	8
64	Single-Ion Magnet and Photoluminescence Properties of Lanthanide(III) Coordination Polymers Based on Pyrimidine-4,6-Dicarboxylate. Magnetochemistry, 2021, 7, 8.	1.0	8
65	Slow relaxation of magnetization and luminescence properties of a novel dysprosium and pyrene-1,3,6,8-tetrasulfonate based MOF. New Journal of Chemistry, 2018, 42, 832-837.	1.4	7
66	Multifunctional coordination compounds based on lanthanide ions and 5-bromonicotinic acid: magnetic, luminescence and anti-cancer properties. CrystEngComm, 2019, 21, 3881-3890.	1.3	7
67	In vitro evaluation of leishmanicidal properties of a new family of monodimensional coordination polymers based on diclofenac ligand. Polyhedron, 2020, 184, 114570.	1.0	7
68	Anti-diabetic and anti-parasitic properties of a family of luminescent zinc coordination compounds based on the 7-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine ligand. Journal of Inorganic Biochemistry, 2020, 212, 111235.	1.5	6
69	Rational design of an unusual 2D-MOF based on Cu(<scp>i</scp>) and 4-hydroxypyrimidine-5-carbonitrile as linker with conductive capabilities: a theoretical approach based on high-pressure XRD. Chemical Communications, 2020, 56, 9473-9476.	2.2	6
70	Dilution effect on the slow relaxation of a luminescent dysprosium Metal-Organic Framework based on 2,5-dihydroxyterephthalic acid. Inorganica Chimica Acta, 2020, 509, 119687.	1.2	6
71	Catalytic Performance and Electrophoretic Behavior of an Yttrium–Organic Framework Based on a Tricarboxylic Asymmetric Alkyne. Inorganic Chemistry, 2022, 61, 1377-1384.	1.9	6
72	A metal-organic framework based on Co(II) and 3-aminoisonicotinate showing specific and reversible colourimetric response to solvent exchange with variable magnet behaviour. Materials Today Chemistry, 2022, 24, 100794.	1.7	6

#	Article	IF	CITATIONS
73	Magnetic and Luminescent Properties of Isostructural 2D Coordination Polymers Based on 2-Pyrimidinecarboxylate and Lanthanide Ions. Crystals, 2020, 10, 571.	1.0	5
74	Photoluminescent Coordination Polymers Based on Group 12 Metals and 1H-Indazole-6-Carboxylic Acid. Inorganics, 2021, 9, 20.	1.2	5
75	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
76	Combined experimental and theoretical investigation on the magnetic properties derived from the coordination of 6-methyl-2-oxonicotinate to 3d-metal ions. Dalton Transactions, 2022, 51, 9780-9792.	1.6	5
77	Condensed heterometallic bidimensional mixed valence Cul/Cull/Nill cyanidometallate. Dalton Transactions, 2009, , 9722.	1.6	4
78	5-Aminopyridine-2-carboxylic acid as appropriate ligand for constructing coordination polymers with luminescence, slow magnetic relaxation and anti-cancer properties. Journal of Inorganic Biochemistry, 2020, 207, 111051.	1.5	4
79	Lanthanide(III) Based Complexes Containing 5,7â€Dimethylâ€1,2,4â€triazolo[1,5â€ <i>a</i>]pyrimidine as Longâ Photoluminescent Antiparasitic Agents. European Journal of Inorganic Chemistry, 2020, 2020, 308-317.	€Lived 1.0	2
80	Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases. Polyhedron, 2019, 171, 53-64.	1.0	0
81	Correction to "Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks― Crystal Growth and Design, 2019, 19, 6823-6823.	1.4	0
82	Photoluminescence and in vitro cytotoxicity analysis in a novel mononuclear Zn(II) coordination compound based on bumetanide. Inorganica Chimica Acta, 2020, 509, 119708.	1.2	0
83	Exploring the Slow Magnetic Relaxation of a Family of Photoluminescent 3D Lanthanide–Organic Frameworks Based on Dicarboxylate Ligands. Magnetochemistry, 2021, 7, 41.	1.0	0
84	Biosensing Using MOFs., 2021, , 457-499.		0
85	Funtzio anitzeko polimero metal-organiko porotsuak (MOF): etorkizuneko material adimendunei begira. Ekaia (journal), 2017, , .	0.0	0
86	Base nitrogenatuak konposatu metal-organiko porotsuak eraikitzeko baliabide: zenbait adibide. Ekaia (journal), 2017, , 113-124.	0.0	0
87	Koordinazio-polimero luminiszenteak: gailu argitsuen etorkizuna. Ekaia (journal), 2020, , 159-174.	0.0	0
88	CO2-ak bultzatutako gizarte baterantz: landareetatik ikasten. Ekaia (journal), 2020, , 189-209.	0.0	0
89	Selectivity of Relative Humidity Using a CP Based on S-Block Metal Ions. Sensors, 2022, 22, 1664.	2.1	0
90	Sensing Capacity in Dysprosium Metal–Organic Frameworks Based on 5-Aminoisophthalic Acid Ligand. Sensors, 2022, 22, 3392.	2.1	0