
## Michael Zevin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464923/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.    | 26.7 | 808       |
| 2  | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.    | 26.7 | 447       |
| 3  | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.           | 26.7 | 427       |
| 4  | ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO. Astrophysical Journal Letters, 2016, 832, L2.                                     | 8.3  | 227       |
| 5  | Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914.<br>Classical and Quantum Gravity, 2016, 33, 134001.         | 4.0  | 225       |
| 6  | Black holes: The next generation—repeated mergers in dense star clusters and their<br>gravitational-wave properties. Physical Review D, 2019, 100, .             | 4.7  | 201       |
| 7  | Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Classical and Quantum Gravity, 2017, 34, 064003.        | 4.0  | 194       |
| 8  | One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple<br>Formation Pathways. Astrophysical Journal, 2021, 910, 152.        | 4.5  | 177       |
| 9  | Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries. Physical Review D, 2018, 98, .      | 4.7  | 173       |
| 10 | COSMIC Variance in Binary Population Synthesis. Astrophysical Journal, 2020, 898, 71.                                                                            | 4.5  | 170       |
| 11 | Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters.<br>Astrophysical Journal, 2019, 871, 91.                              | 4.5  | 158       |
| 12 | A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of<br>Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218. | 4.5  | 144       |
| 13 | Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations.<br>Astrophysical Journal, 2017, 846, 82.                               | 4.5  | 128       |
| 14 | Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution. Astrophysical<br>Journal Letters, 2020, 899, L1.                               | 8.3  | 102       |
| 15 | Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves. Astrophysical<br>Journal, 2020, 900, 177.                                       | 4.5  | 94        |
| 16 | The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.                   | 4.0  | 90        |
| 17 | The impact of mass-transfer physics on the observable properties of field binary black hole populations. Astronomy and Astrophysics, 2021, 647, A153.            | 5.1  | 86        |
| 18 | Evidence for Hierarchical Black Hole Mergers in the Second LIGO–Virgo Gravitational Wave Catalog.<br>Astrophysical Journal Letters, 2021, 915, L35.              | 8.3  | 86        |

MICHAEL ZEVIN

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850,<br>L40.                                                                                           | 8.3 | 73        |
| 20 | Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band. Physical Review D, 2019, 99, .                                                                                   | 4.7 | 73        |
| 21 | The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.                                                                                                   | 2.4 | 69        |
| 22 | Machine learning for Gravity Spy: Glitch classification and dataset. Information Sciences, 2018, 444, 172-186.                                                                                        | 6.9 | 54        |
| 23 | Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO<br>Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89. | 4.5 | 52        |
| 24 | Black Hole Mergers from Hierarchical Triples in Dense Star Clusters. Astrophysical Journal, 2020, 903,<br>67.                                                                                         | 4.5 | 50        |
| 25 | You Can't Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412.<br>Astrophysical Journal Letters, 2020, 899, L17.                                                       | 8.3 | 49        |
| 26 | Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophysical<br>Journal Letters, 2021, 921, L43.                                                                     | 8.3 | 36        |
| 27 | Stochastic gravitational-wave background as a tool for investigating multi-channel astrophysical and primordial black-hole mergers. Astronomy and Astrophysics, 2022, 660, A26.                       | 5.1 | 36        |
| 28 | Modeling Dense Star Clusters in the Milky Way and beyond with the Cluster Monte Carlo Code.<br>Astrophysical Journal, Supplement Series, 2022, 258, 22.                                               | 7.7 | 33        |
| 29 | Can Neutron-star Mergers Explain the r-process Enrichment in Globular Clusters?. Astrophysical<br>Journal, 2019, 886, 4.                                                                              | 4.5 | 32        |
| 30 | Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity<br>learning. Physical Review D, 2019, 99, .                                                          | 4.7 | 29        |
| 31 | First joint observation by the underground gravitational-wave detector KAGRA with GEO 600.<br>Progress of Theoretical and Experimental Physics, 2022, 2022, .                                         | 6.6 | 20        |
| 32 | ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION. Astrophysical Journal, 2017, 834, 154.                                                                                   | 4.5 | 19        |
| 33 | Cosmologically Coupled Compact Objects: A Single-parameter Model for LIGO–Virgo Mass and Redshift Distributions. Astrophysical Journal Letters, 2021, 921, L22.                                       | 8.3 | 19        |
| 34 | Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts.<br>Astronomy and Astrophysics, 2022, 657, L8.                                                               | 5.1 | 18        |
| 35 | Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers.<br>Astrophysical Journal Letters, 2018, 854, L25.                                                      | 8.3 | 15        |
| 36 | The missing link in gravitational-wave astronomy. Experimental Astronomy, 2021, 51, 1427-1440.                                                                                                        | 3.7 | 15        |

MICHAEL ZEVIN

| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deep multi-view models for glitch classification. , 2017, , .                                                                              |     | 14        |
| 38 | Forward Modeling of Double Neutron Stars: Insights from Highly Offset Short Gamma-Ray Bursts.<br>Astrophysical Journal, 2020, 904, 190.    | 4.5 | 13        |
| 39 | Direct: Deep Discriminative Embedding for Clustering of Ligo Data. , 2018, , .                                                             |     | 12        |
| 40 | Knowledge Tracing to Model Learning in Online Citizen Science Projects. IEEE Transactions on Learning Technologies, 2020, 13, 123-134.     | 3.2 | 10        |
| 41 | Teaching citizen scientists to categorize glitches using machine learning guided training. Computers in Human Behavior, 2020, 105, 106198. | 8.5 | 9         |
| 42 | Approximations of the Spin of Close Black Hole–Wolf–Rayet Binaries. Research Notes of the AAS, 2021, 5, 127.                               | 0.7 | 5         |
| 43 | Incorporating current research into formal higher education settings using Astrobites. American<br>Journal of Physics, 2017, 85, 741-749.  | 0.7 | 2         |
| 44 | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.          |     | 2         |