Marc Emyr Huw Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464857/publications.pdf

Version: 2024-02-01

51	1,809	24 h-index	40
papers	citations		g-index
53	53	53	1590
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clade-wide variation in bite-force performance is determined primarily by size, not ecology. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212493.	1.2	4
2	Ontogenetic allometry underlies trophic diversity in sea turtles (Chelonioidea). Evolutionary Ecology, 2022, 36, 511-540.	0.5	7
3	Middle Jurassic fossils document an early stage in salamander evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
4	Redescription of the skull of the Australian flatback sea turtle, <i>Natator depressus, </i> provides new morphological evidence for phylogenetic relationships among sea turtles (Chelonioidea). Zoological Journal of the Linnean Society, 2021, 191, 1090-1113.	1.0	2
5	Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. Journal of Experimental Biology, 2021, 224, .	0.8	14
6	Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2020, 111, 135-156.	0.3	19
7	<i>Colobops</i> : a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. Royal Society Open Science, 2020, 7, 192179.	1.1	26
8	Disparities in the analysis of morphological disparity. Biology Letters, 2020, 16, 20200199.	1.0	60
9	Reproductive phenotype predicts adult biteâ€force performance in sexâ€reversed dragons (<i>Pogona) Tj ETQq1</i>	1 0.78431 0.9	4 rgBT /Ove 14
	252-263.		
10	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7.	3.2	18
10	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards.	3.2	18
	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards.		
11	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards. Evolution; International Journal of Organic Evolution, 2019, 73, 2216-2229. Digital dissection of the head of the rock dove (Columba livia) using contrast-enhanced computed	1.1	13
11 12	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards. Evolution; International Journal of Organic Evolution, 2019, 73, 2216-2229. Digital dissection of the head of the rock dove (Columba livia) using contrast-enhanced computed tomography. Zoological Letters, 2019, 5, 17. Exceptional Disparity in Australian Agamid Lizards is a Possible Result of Arrival into Vacant Niche.	1.1 0.7 0.8	13
11 12 13	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards. Evolution; International Journal of Organic Evolution, 2019, 73, 2216-2229. Digital dissection of the head of the rock dove (Columba livia) using contrast-enhanced computed tomography. Zoological Letters, 2019, 5, 17. Exceptional Disparity in Australian Agamid Lizards is a Possible Result of Arrival into Vacant Niche. Anatomical Record, 2019, 302, 1536-1543. Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic	1.1 0.7 0.8 1.5	13 21 6
11 12 13	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards. Evolution; International Journal of Organic Evolution, 2019, 73, 2216-2229. Digital dissection of the head of the rock dove (Columba livia) using contrast-enhanced computed tomography. Zoological Letters, 2019, 5, 17. Exceptional Disparity in Australian Agamid Lizards is a Possible Result of Arrival into Vacant Niche. Anatomical Record, 2019, 302, 1536-1543. Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile. Journal of the Royal Society Interface, 2018, 15, 20180039.	1.1 0.7 0.8 1.5	13 21 6 19
11 12 13 14	Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology, 2019, 19, 7. Evolution of cranial shape in a continentalâ€scale evolutionary radiation of Australian lizards. Evolution; International Journal of Organic Evolution, 2019, 73, 2216-2229. Digital dissection of the head of the rock dove (Columba livia) using contrast-enhanced computed tomography. Zoological Letters, 2019, 5, 17. Exceptional Disparity in Australian Agamid Lizards is a Possible Result of Arrival into Vacant Niche. Anatomical Record, 2019, 302, 1536-1543. Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile. Journal of the Royal Society Interface, 2018, 15, 20180039. Sole survivor of a once-diverse lineage. Nature, 2017, 545, 158-158. Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs.	1.1 0.7 0.8 1.5	13 21 6 19

#	Article	IF	Citations
19	Sesamoid bones in tuatara (<i>Sphenodon punctatus</i>) investigated with Xâ€ray microtomography, and implications for sesamoid evolution in Lepidosauria. Journal of Morphology, 2017, 278, 62-72.	0.6	22
20	The biomechanical role of the chondrocranium and sutures in a lizard cranium. Journal of the Royal Society Interface, 2017, 14, 20170637.	1.5	24
21	Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (<i>Sphenodon) Tj ETQq1 1</i>	0.784314	rgBT /Overlo
22	Aquatic adaptations in the four limbs of the snake-like reptile Tetrapodophis from the Lower Cretaceous of Brazil. Cretaceous Research, 2016, 66, 194-199.	0.6	20
23	Reliable quantification of bite-force performance requires use of appropriate biting substrate and standardization of bite out-lever. Journal of Experimental Biology, 2014, 217, 4303-12.	0.8	49
24	New Material of Beelzebufo, a Hyperossified Frog (Amphibia: Anura) from the Late Cretaceous of Madagascar. PLoS ONE, 2014, 9, e87236.	1.1	43
25	Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes,) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
26	The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull. Journal of the Royal Society Interface, 2013, 10, 20130216.	1.5	66
27	Cranial sutures work collectively to distribute strain throughout the reptile skull. Journal of the Royal Society Interface, 2013, 10, 20130584.	1.5	2
28	Cranial sutures work collectively to distribute strain throughout the reptile skull. Journal of the Royal Society Interface, 2013, 10, 20130442.	1.5	54
29	Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China. PLoS ONE, 2013, 8, e69723.	1.1	42
30	Tooth and cranial disparity in the fossil relatives of <i><scp>S</scp>phenodon</i> (<scp>R</scp> hynchocephalia) dispute the persistent †living fossil' label. Journal of Evolutionary Biology, 2012, 25, 2194-2209.	0.8	39
31	Tuatara. Current Biology, 2012, 22, R986-R987.	1.8	29
32	A Late Cretaceous "tuatara―(Lepidosauria: Sphenodontinae) from South America. Cretaceous Research, 2012, 34, 154-160.	0.6	24
33	New information on the anatomy and systematic position of <i>Dinheirosaurus lourinhanensis</i> (Sauropoda: Diplodocoidea) from the Late Jurassic of Portugal, with a review of European diplodocoids. Journal of Systematic Palaeontology, 2012, 10, 521-551.	0.6	61
34	A new lizard skull from the Purbeck Limestone Group (Lower Cretaceous) of England. Bulletin - Societie Geologique De France, 2012, 183, 517-524.	0.9	11
35	The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines. PLoS ONE, 2012, 7, e47852.	1.1	67
36	Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in Sphenodon (Lepidosauria: Rhynchocephalia). Anatomical Record, 2012, 295, C1-C1.	0.8	0

#	Article	IF	CITATIONS
37	Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in <i>Sphenodon</i> (Lepidosauria: Rhynchocephalia). Anatomical Record, 2012, 295, 1075-1091.	0.8	37
38	Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development. PLoS ONE, 2011, 6, e29804.	1.1	30
39	The Origin, Early History and Diversification of Lepidosauromorph Reptiles. Lecture Notes in Earth Sciences, 2010, , 27-44.	0.5	65
40	Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull. Journal of Biomechanics, 2010, 43, 2804-2809.	0.9	35
41	Feedback control from the jaw joints during biting: An investigation of the reptile Sphenodon using multibody modelling. Journal of Biomechanics, 2010, 43, 3132-3137.	0.9	13
42	Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). Journal of the Royal Society Interface, 2010, 7, 153-160.	1.5	49
43	A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (<i>Sphenodon</i>). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1385-1390.	1.2	91
44	Assessment of the role of sutures in a lizard skull: a computer modelling study. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 39-46.	1.2	100
45	A new Early Cretaceous salamander (Regalerpeton weichangensis gen. et sp. nov.) from the Huajiying Formation of northeastern China. Cretaceous Research, 2009, 30, 551-558.	0.6	29
46	A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 879-886.	1.2	63
47	Biteâ€force performance of the last rhynchocephalian (Lepidosauria: <i>Sphenodon</i>). Journal of the Royal Society of New Zealand, 2009, 39, 71-83.	1.0	39
48	Skull shape and feeding strategy in <i>Sphenodon</i> and other Rhynchocephalia (Diapsida:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 ₉ Tf 50 302
49	A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2951-2956.	3.3	91
50	A juvenile anuran from the Lower Cretaceous Jiufotang Formation, Liaoning, China. Cretaceous Research, 2007, 28, 235-244.	0.6	14
51	An aggregation of lizard skeletons from the Lower Cretaceous of China. Senckenbergiana Lethaea, 2007, 87, 109-118.	0.3	15