
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 2008, 451, 340-344.	13.7	643
2	Mathematical Models of Avascular Tumor Growth. SIAM Review, 2007, 49, 179-208.	4.2	469
3	Pattern Formation by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch Intercellular Signalling. Journal of Theoretical Biology, 1996, 183, 429-446.	0.8	468
4	Reaction and Diffusion on Growing Domains: Scenarios for Robust Pattern Formation. Bulletin of Mathematical Biology, 1999, 61, 1093-1120.	0.9	286
5	Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3601-3610.	1.7	261
6	Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4008-4013.	3.3	253
7	Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5464-5469.	3.3	240
8	Traveling Wave Model to Interpret a Wound-Healing Cell Migration Assay for Human Peritoneal Mesothelial Cells. Tissue Engineering, 2004, 10, 475-482.	4.9	221
9	Non-linear incidence and stability of infectious disease models. Mathematical Medicine and Biology, 2005, 22, 113-128.	0.8	217
10	A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1, 57-60.	1.0	211
11	Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications, 2009, 180, 2452-2471.	3.0	207
12	Mathematical oncology: Cancer summed up. Nature, 2003, 421, 321-321.	13.7	201
13	Turing's model for biological pattern formation and the robustness problem. Interface Focus, 2012, 2, 487-496.	1.5	192
14	Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells. Science, 2011, 332, 586-589.	6.0	186
15	Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Computational Biology, 2017, 13, e1005387.	1.5	185
16	Angiogenesis and vascular remodelling in normal and cancerous tissues. Journal of Mathematical Biology, 2009, 58, 689-721.	0.8	178
17	Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch. Science, 2010, 327, 685-689.	6.0	176
18	DEVELOPMENTAL BIOLOGY: The Turing Model Comes of Molecular Age. Science, 2006, 314, 1397-1398.	6.0	175

#	Article	IF	CITATIONS
19	Metabolic changes during carcinogenesis: Potential impact on invasiveness. Journal of Theoretical Biology, 2007, 244, 703-713.	0.8	164
20	A Mechanochemical Model for Adult Dermal Wound Contraction and the Permanence of the Contracted Tissue Displacement Profile. Journal of Theoretical Biology, 1995, 177, 113-128.	0.8	161
21	Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infectious Diseases, The, 2022, 22, 603-610.	4.6	154
22	Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance. PLoS Computational Biology, 2015, 11, e1004493.	1.5	151
23	Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions. PLoS ONE, 2011, 6, e14790.	1.1	150
24	Enzyme Kinetics at High Enzyme Concentration. Bulletin of Mathematical Biology, 2000, 62, 483-499.	0.9	149
25	The role of acidity in solid tumour growth and invasion. Journal of Theoretical Biology, 2005, 235, 476-484.	0.8	140
26	Implementing vertex dynamics models of cell populations in biology within a consistent computational framework. Progress in Biophysics and Molecular Biology, 2013, 113, 299-326.	1.4	135
27	Phenotypic models of T cell activation. Nature Reviews Immunology, 2014, 14, 619-629.	10.6	135
28	Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. International Journal of Developmental Biology, 2009, 53, 813-826.	0.3	133
29	Multiscale mechanisms of cell migration during development: theory and experiment. Development (Cambridge), 2012, 139, 2935-2944.	1.2	133
30	Turing instabilities in general systems. Journal of Mathematical Biology, 2000, 41, 493-512.	0.8	122
31	Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front. Development (Cambridge), 2015, 142, 2014-2025.	1.2	119
32	An analysis of B cell selection mechanisms in germinal centers. Mathematical Medicine and Biology, 2006, 23, 255-277.	0.8	117
33	A clock and wavefront mechanism for somite formation. Developmental Biology, 2006, 293, 116-126.	0.9	114
34	Mathematical Modelling of Extracellular Matrix Dynamics using Discrete Cells: Fiber Orientation and Tissue Regeneration. Journal of Theoretical Biology, 1999, 199, 449-471.	0.8	113
35	Cellular pattern formation during Dictyostelium aggregation. Physica D: Nonlinear Phenomena, 1995, 85, 425-444.	1.3	112
36	A PHABULOSA/Cytokinin Feedback Loop Controls Root Growth in Arabidopsis. Current Biology, 2012, 22, 1699-1704.	1.8	112

#	Article	IF	CITATIONS
37	Multi-Cellular Rosettes in the Mouse Visceral Endoderm Facilitate the Ordered Migration of Anterior Visceral Endoderm Cells. PLoS Biology, 2012, 10, e1001256.	2.6	105
38	Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D: Nonlinear Phenomena, 2005, 202, 95-115.	1.3	104
39	The Effect of Growth and Curvature on Pattern Formation. Journal of Dynamics and Differential Equations, 2004, 16, 1093-1121.	1.0	100
40	A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics, 2003, 190, 478-500.	1.9	96
41	Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. Journal of Mathematical Biology, 2010, 61, 133-164.	0.8	89
42	Mixed-mode pattern in Doublefoot mutant mouse limb—Turing reaction–diffusion model on a growing domain during limb development. Journal of Theoretical Biology, 2006, 240, 562-573.	0.8	88
43	Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. FASEB Journal, 2017, 31, 636-649.	0.2	88
44	Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. Mathematical Medicine and Biology, 1992, 9, 197-213.	0.8	82
45	Mathematical modeling of corneal epithelial wound healing. Mathematical Biosciences, 1994, 124, 127-147.	0.9	78
46	From a discrete to a continuum model of cell dynamics in one dimension. Physical Review E, 2009, 80, 031912.	0.8	78
47	Enabling multiscale modeling in systems medicine. Genome Medicine, 2014, 6, 21.	3.6	76
48	<i>In vitro</i> cell migration quantification method for scratch assays. Journal of the Royal Society Interface, 2019, 16, 20180709.	1.5	76
49	VEGF signals induce trailblazer cell identity that drives neural crest migration. Developmental Biology, 2015, 407, 12-25.	0.9	75
50	Diffusion driven instability in an inhomogeneous domain. Bulletin of Mathematical Biology, 1993, 55, 365-384.	0.9	72
51	Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. Journal of Computational Physics, 2007, 225, 100-119.	1.9	72
52	On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process. Frontiers in Physiology, 2015, 6, 262.	1.3	72
53	Multiscale Modelling of Tumour Growth and Therapy: The Influence of Vessel Normalisation on Chemotherapy. Computational and Mathematical Methods in Medicine, 2006, 7, 85-119.	0.7	71
54	Turnover Modulates the Need for a Cost of Resistance in Adaptive Therapy. Cancer Research, 2021, 81, 1135-1147.	0.4	71

#	Article	IF	CITATIONS
55	Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations. Journal of Mathematical Biology, 1994, 33, 163-192.	0.8	70
56	Multiscale Modeling in Biology. American Scientist, 2007, 95, 134.	0.1	70
57	Age-Related Changes in Speed and Mechanism of Adult Skeletal Muscle Stem Cell Migration. Stem Cells, 2012, 30, 1182-1195.	1.4	68
58	Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D: Nonlinear Phenomena, 2003, 181, 80-101.	1.3	67
59	Modelling Spatially Regulated β-Catenin Dynamics and Invasion inÂIntestinal Crypts. Biophysical Journal, 2010, 99, 716-725.	0.2	66
60	A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains. Journal of Scientific Computing, 2005, 24, 247-262.	1.1	65
61	A Mechanistic Model of the Intravitreal Pharmacokinetics of Large Molecules and the Pharmacodynamic Suppression of Ocular Vascular Endothelial Growth Factor Levels by Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration. Molecular Pharmaceutics, 2016, 13, 2941-2950.	2.3	65
62	Modeling the effects of transforming growth factor-beta on extracellular matrix alignment in dermal wound repair. Wound Repair and Regeneration, 2001, 9, 278-286.	1.5	64
63	Mesoscopic and continuum modelling of angiogenesis. Journal of Mathematical Biology, 2015, 70, 485-532.	0.8	64
64	3D hybrid modelling of vascular network formation. Journal of Theoretical Biology, 2017, 414, 254-268.	0.8	63
65	High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing. ELife, 2021, 10, .	2.8	63
66	Speed of pattern appearance in reaction-diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bulletin of Mathematical Biology, 2004, 66, 627-649.	0.9	62
67	Tumour–stromal interactions in acid-mediated invasion: A mathematical model. Journal of Theoretical Biology, 2010, 267, 461-470.	0.8	62
68	Spots and stripes: Pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Developmental Biology, 2009, 334, 369-382.	0.9	61
69	Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death and Disease, 2019, 10, 108.	2.7	61
70	On the proportion of cancer stem cells in a tumour. Journal of Theoretical Biology, 2010, 266, 708-711.	0.8	59
71	Stochastic reaction and diffusion on growing domains: Understanding the breakdown of robust pattern formation. Physical Review E, 2011, 84, 046216.	0.8	59
72	Chaste: Cancer, Heart and Soft Tissue Environment. Journal of Open Source Software, 2020, 5, 1848.	2.0	58

#	Article	IF	CITATIONS
73	A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 851-859.	1.2	57
74	A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt. Journal of Theoretical Biology, 2012, 312, 143-156.	0.8	57
75	Pigmentation pattern formation in butterflies: experiments and models. Comptes Rendus - Biologies, 2003, 326, 717-727.	0.1	56
76	Ocular Pharmacokinetics of Therapeutic Antibodies Given by Intravitreal Injection: Estimation of Retinal Permeabilities Using a 3-Compartment Semi-Mechanistic Model. Molecular Pharmaceutics, 2017, 14, 2690-2696.	2.3	55
77	Parameter space analysis, pattern sensitivity and model comparison for Turing and stationary flow-distributed waves (FDS). Physica D: Nonlinear Phenomena, 2001, 160, 79-102.	1.3	54
78	Examples of Mathematical Modeling: Tales from the Crypt. Cell Cycle, 2007, 6, 2106-2112.	1.3	54
79	MODELLING THE RESPONSE OF VASCULAR TUMOURS TO CHEMOTHERAPY: A MULTISCALE APPROACH. Mathematical Models and Methods in Applied Sciences, 2006, 16, 1219-1241.	1.7	52
80	DendroBLAST: Approximate Phylogenetic Trees in the Absence of Multiple Sequence Alignments. PLoS ONE, 2013, 8, e58537.	1.1	52
81	Mathematical modelling of anisotropy in fibrous connective tissue. Mathematical Biosciences, 1999, 158, 145-170.	0.9	50
82	The clock and wavefront model revisited. Journal of Theoretical Biology, 2011, 283, 227-238.	0.8	50
83	A mathematical model for fibro-proliferative wound healing disorders. Bulletin of Mathematical Biology, 1996, 58, 787-808.	0.9	49
84	Unravelling the Turing bifurcation using spatially varying diffusion coefficients. Journal of Mathematical Biology, 1998, 37, 381-417.	0.8	49
85	Growth-induced mass flows in fungal networks. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3265-3274.	1.2	49
86	A general reaction–diffusion model of acidity in cancer invasion. Journal of Mathematical Biology, 2014, 68, 1199-1224.	0.8	48
87	The Dynamics and Pinning of a Spike for a Reaction-Diffusion System. SIAM Journal on Applied Mathematics, 2002, 62, 1297-1328.	0.8	47
88	Cutting Edge: Back to "One-Way―Germinal Centers. Journal of Immunology, 2005, 174, 2489-2493.	0.4	47
89	Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model. PLoS Computational Biology, 2016, 12, e1004712.	1.5	47
90	Different populations of RNA polymerase II in living mammalian cells. Chromosome Research, 2005, 13, 135-144.	1.0	45

#	Article	IF	CITATIONS
91	The Evolution of Tumour Composition During Fractionated Radiotherapy: Implications for Outcome. Bulletin of Mathematical Biology, 2018, 80, 1207-1235.	0.9	45
92	Systems Model of T Cell Receptor Proximal Signaling Reveals Emergent Ultrasensitivity. PLoS Computational Biology, 2013, 9, e1003004.	1.5	44
93	A mechanism for morphogen-controlled domain growth. Journal of Mathematical Biology, 2007, 54, 597-622.	0.8	43
94	Modeling the skin pattern of fishes. Physical Review E, 2009, 79, 031908.	0.8	42
95	Patterns of non-normality in networked systems. Journal of Theoretical Biology, 2019, 480, 81-91.	0.8	42
96	A Numerical Approach to the Study of Spatial Pattern Formation in the Ligaments of Arcoid Bivalves. Bulletin of Mathematical Biology, 2002, 64, 501-530.	0.9	41
97	Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Physical Review E, 2012, 86, 031903.	0.8	41
98	Advection, diffusion, and delivery over a network. Physical Review E, 2012, 86, 021905.	0.8	41
99	A Fibrocontractive Mechanochemical Model of Dermal Wound Closure Incorporating Realistic Growth Factor Kinetics. Bulletin of Mathematical Biology, 2012, 74, 1143-1170.	0.9	41
100	Logistic Proliferation of Cells in Scratch Assays is Delayed. Bulletin of Mathematical Biology, 2017, 79, 1028-1050.	0.9	41
101	Clock and induction model for somitogenesis. , 2000, 217, 415-420.		40
102	A mathematical investigation of a Clock and Wavefront model for somitogenesis. Journal of Mathematical Biology, 2006, 52, 458-482.	0.8	40
103	A mechanochemical model of striae distensae. Mathematical Biosciences, 2012, 240, 141-147.	0.9	40
104	Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27811-27819.	3.3	40
105	Inference of the SARS-CoV-2 generation time using UK household data. ELife, 2022, 11, .	2.8	40
106	Using mathematical models to help understand biological pattern formation. Comptes Rendus - Biologies, 2004, 327, 225-234.	0.1	39
107	Incorporating chemical signalling factors into cell-based models of growing epithelial tissues. Journal of Mathematical Biology, 2012, 65, 441-463.	0.8	39
108	Mathematical Models for Somite Formation. Current Topics in Developmental Biology, 2008, 81, 183-203.	1.0	38

#	Article	IF	CITATIONS
109	Multidisciplinary approaches to understanding collective cell migration in developmental biology. Open Biology, 2016, 6, 160056.	1.5	38
110	The Goldilocks Window of Personalized Chemotherapy: Getting the Immune Response Just Right. Cancer Research, 2019, 79, 5302-5315.	0.4	38
111	Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations. Journal of Mathematical Biology, 1997, 35, 713-728.	0.8	37
112	Mathematical Oncology. Bulletin of Mathematical Biology, 2018, 80, 945-953.	0.9	37
113	Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Scientific Reports, 2020, 10, 425.	1.6	37
114	Mathematical modelling of tumour acidity. Journal of Theoretical Biology, 2008, 255, 106-112.	0.8	36
115	A mathematical model of tumour and blood pHe regulation: The buffering system. Mathematical Biosciences, 2011, 230, 1-11.	0.9	36
116	Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis. Journal of Microscopy, 2012, 245, 82-89.	0.8	36
117	Biological Pattern Formation on Two-Dimensional Spatial Domains: A Nonlinear Bifurcation Analysis. SIAM Journal on Applied Mathematics, 1997, 57, 1485-1509.	0.8	35
118	Mode Transitions in a Model Reaction–Diffusion System Driven by Domain Growth and Noise. Bulletin of Mathematical Biology, 2006, 68, 981-995.	0.9	35
119	Prey Switching with a Linear Preference Trade-Off. SIAM Journal on Applied Dynamical Systems, 2014, 13, 658-682.	0.7	35
120	HTLV-I infection: A dynamic struggle between viral persistence and host immunity. Journal of Theoretical Biology, 2014, 352, 92-108.	0.8	35
121	Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. Journal of Theoretical Biology, 2015, 367, 286-295.	0.8	35
122	A design principle for vascular beds: the effects of complex blood rheology. Microvascular Research, 2005, 69, 156-172.	1.1	34
123	Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies. International Journal of Developmental Biology, 2009, 53, 783-794.	0.3	34
124	Modern perspectives on near-equilibrium analysis of Turing systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200268.	1.6	34
125	Modelling collective cell migration: neural crest as a model paradigm. Journal of Mathematical Biology, 2020, 80, 481-504.	0.8	33
126	Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing. Bulletin of Mathematical Biology, 1997, 59, 1077-1100.	0.9	32

#	Article	IF	CITATIONS
127	Incorporating spatial correlations into multispecies mean-field models. Physical Review E, 2013, 88, 052713.	0.8	32
128	Theoretical Insights into the Retinal Dynamics of Vascular Endothelial Growth Factor in Patients Treated with Ranibizumab, Based on an Ocular Pharmacokinetic/Pharmacodynamic Model. Molecular Pharmaceutics, 2018, 15, 2770-2784.	2.3	32
129	Phase differences in reaction-diffusion-advection systems and applications to morphogenesis. IMA Journal of Applied Mathematics, 1995, 55, 19-33.	0.8	31
130	Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation. Kaibogaku Zasshi Journal of Anatomy, 2004, 79, 112-123.	1.2	31
131	From segment to somite: Segmentation to epithelialization analyzed within quantitative frameworks. Developmental Dynamics, 2007, 236, 1392-1402.	0.8	31
132	An efficient and robust numerical algorithm for estimating parameters in Turing systems. Journal of Computational Physics, 2010, 229, 7058-7071.	1.9	31
133	A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS Computational Biology, 2021, 17, e1008055.	1.5	31
134	Pattern Formation of Scale Cells in Lepidoptera by Differential Origin-dependent Cell Adhesion. Bulletin of Mathematical Biology, 1999, 61, 807-828.	0.9	30
135	A Mathematical Model for Germinal Centre Kinetics and Affinity Maturation. Journal of Theoretical Biology, 2002, 219, 153-175.	0.8	30
136	Streaming instability of slime mold amoebae: An analytical model. Physical Review E, 1997, 56, 2074-2080.	0.8	29
137	Modeling Chemotaxis Reveals the Role of Reversed Phosphotransfer and a Bi-Functional Kinase-Phosphatase. PLoS Computational Biology, 2010, 6, e1000896.	1.5	29
138	Microvessel Chaste: An Open Library for Spatial Modeling of Vascularized Tissues. Biophysical Journal, 2017, 112, 1767-1772.	0.2	29
139	Modeling angiogenesis: A discrete to continuum description. Physical Review E, 2017, 95, 012410.	0.8	28
140	DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion. Journal of Cell Biology, 2017, 216, 3339-3354.	2.3	27
141	Integrating Models to Quantify Environment-Mediated Drug Resistance. Cancer Research, 2017, 77, 5409-5418.	0.4	27
142	Selfâ€organizing hair pegâ€like structures from dissociated skin progenitor cells: New insights for human hair follicle organoid engineering and Turing patterning in an asymmetric morphogenetic field. Experimental Dermatology, 2019, 28, 355-366.	1.4	27
143	Spatially varying equilibria of mechanical models: Application to dermal wound contraction. Mathematical Biosciences, 1998, 147, 113-129.	0.9	26
144	Distinct mechanisms underlie pattern formation in the skin and skin appendages. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 280-291.	3.6	26

#	Article	IF	CITATIONS
145	Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold. Journal of Mathematical Biology, 2007, 54, 745-760.	0.8	26
146	Hybrid approaches for multiple-species stochastic reaction–diffusion models. Journal of Computational Physics, 2015, 299, 429-445.	1.9	26
147	A theoretical framework for transitioning from patient-level to population-scale epidemiological dynamics: influenza A as a case study. Journal of the Royal Society Interface, 2020, 17, 20200230.	1.5	26
148	The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1, 515-535.	0.5	26
149	Spatial structure impacts adaptive therapy by shaping intra-tumoral competition. Communications Medicine, 2022, 2, .	1.9	26
150	Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output. Cerebral Cortex, 2018, 28, 2540-2550.	1.6	25
151	Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. Comptes Rendus - Biologies, 2002, 325, 179-189.	0.1	24
152	Directional persistence and the optimality of run-and-tumble chemotaxis. Computational Biology and Chemistry, 2009, 33, 269-274.	1.1	24
153	Neural crest cells bulldoze through the microenvironment using Aquaporin-1 to stabilize filopodia. Development (Cambridge), 2020, 147, .	1.2	24
154	Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments. Journal of Mathematical Biology, 2020, 80, 775-807.	0.8	24
155	An integrated approach to quantitative modelling in angiogenesis research. Journal of the Royal Society Interface, 2015, 12, 20150546.	1.5	23
156	Multisite Phosphorylation Modulates the T Cell Receptor ζ-Chain Potency but not the Switchlike Response. Biophysical Journal, 2016, 110, 1896-1906.	0.2	23
157	Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bulletin of Mathematical Biology, 1997, 59, 517-532.	0.9	22
158	A theoretical study of the response of vascular tumours to different types of chemotherapy. Mathematical and Computer Modelling, 2008, 47, 560-579.	2.0	22
159	Modelling Hair Follicle Growth Dynamics as an Excitable Medium. PLoS Computational Biology, 2012, 8, e1002804.	1.5	22
160	Predicting the Influence of Microvascular Structure On Tumor Response to Radiotherapy. IEEE Transactions on Biomedical Engineering, 2017, 64, 504-511.	2.5	22
161	Tuneable superradiant thermal emitter assembly. Physical Review B, 2017, 95, .	1.1	22
162	Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. Current Opinion in Biomedical Engineering, 2020, 15, 32-39.	1.8	22

PHILIP K MAINI

#	Article	IF	CITATIONS
163	Infection, inflammation and intervention: mechanistic modelling of epithelial cells in COVID-19. Journal of the Royal Society Interface, 2021, 18, 20200950.	1.5	22
164	Travelling gradients in interacting morphogen systems. Mathematical Biosciences, 2007, 209, 30-50.	0.9	21
165	Theoretical insights into bacterial chemotaxis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 247-259.	6.6	21
166	Multiscale modelling of intestinal crypt organization and carcinogenesis. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2563-2585.	1.7	21
167	A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium. PLoS Computational Biology, 2017, 13, e1005688.	1.5	21
168	DISPERSAL CAN SHARPEN PARAPATRIC BOUNDARIES ON A SPATIALLY VARYING ENVIRONMENT. Ecology, 2000, 81, 749-760.	1.5	20
169	Feedback Control Architecture and the Bacterial Chemotaxis Network. PLoS Computational Biology, 2011, 7, e1001130.	1.5	20
170	A Mathematical Dissection of the Adaptation of Cell Populations to Fluctuating Oxygen Levels. Bulletin of Mathematical Biology, 2020, 82, 81.	0.9	20
171	Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides. PLoS Computational Biology, 2013, 9, e1003276.	1.5	19
172	A filter-flow perspective of haematogenous metastasis offers a non-genetic paradigm for personalised cancer therapy. European Journal of Cancer, 2014, 50, 3068-3075.	1.3	19
173	Fat versus Thin Threading Approach on GPUs: Application to Stochastic Simulation of Chemical Reactions. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 280-287.	4.0	18
174	Mathematical modelling of digit specification by a sonic hedgehog gradient. Developmental Dynamics, 2014, 243, 290-298.	0.8	18
175	Glucose–lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy. Journal of Theoretical Biology, 2014, 361, 190-203.	0.8	18
176	Systems biology and cancer. Progress in Biophysics and Molecular Biology, 2011, 106, 337-339.	1.4	17
177	A Predator2 Prey FastSlow Dynamical System for Rapid Predator Evolution. SIAM Journal on Applied Dynamical Systems, 2017, 16, 54-90.	0.7	17
178	How the mouse got its stripes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9656-9657.	3.3	16
179	What Has Mathematics Done for Biology?. Bulletin of Mathematical Biology, 2015, 77, 735-738.	0.9	16
180	Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. PLoS Computational Biology, 2019, 15, e1006913.	1.5	16

#	Article	IF	CITATIONS
181	A shooting argument approach to a Sharp-type solution for nonlinear degenerate Fisher-KPP equations. IMA Journal of Applied Mathematics, 1996, 57, 211-221.	0.8	15
182	Turing patterns in fish skin?. Nature, 1996, 380, 678-678.	13.7	15
183	AGGREGATIVE MOVEMENT AND FRONT PROPAGATION FOR BI-STABLE POPULATION MODELS. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1351-1368.	1.7	15
184	Metabolic Alterations During the Growth of Tumour Spheroids. Cell Biochemistry and Biophysics, 2014, 68, 615-628.	0.9	15
185	Semblance of Heterogeneity in Collective Cell Migration. Cell Systems, 2017, 5, 119-127.e1.	2.9	15
186	A three phase model to investigate the effects of dead material on the growth of avascular tumours. Mathematical Modelling of Natural Phenomena, 2020, 15, 22.	0.9	15
187	Models, measurement and inference in epithelial tissue dynamics. Mathematical Biosciences and Engineering, 2015, 12, 1321-1340.	1.0	15
188	Formation of Vertebral Precursors: Past Models and Future Predictions. Journal of Theoretical Medicine, 2003, 5, 23-35.	0.5	14
189	Modelling Delta-Notch perturbations during zebrafish somitogenesis. Developmental Biology, 2013, 373, 407-421.	0.9	14
190	Conformational Spread in the Flagellar Motor Switch: A Model Study. PLoS Computational Biology, 2012, 8, e1002523.	1.5	13
191	Inferring Tumor Proliferative Organization from Phylogenetic Tree Measures in a Computational Model. Systematic Biology, 2020, 69, 623-637.	2.7	13
192	Mix and Match: Phenotypic Coexistence as a Key Facilitator of Cancer Invasion. Bulletin of Mathematical Biology, 2020, 82, 15.	0.9	13
193	Isolating Patterns in Open Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 2021, 83, 82.	0.9	13
194	The effect of population density on shoot morphology of herbs in relation to light capture by leaves. Ecological Modelling, 2000, 128, 51-62.	1.2	12
195	A Model of Primitive Streak Initiation in the Chick Embryo. Journal of Theoretical Biology, 2001, 208, 419-438.	0.8	12
196	Approximating the Critical Domain Size of Integrodifference Equations. Bulletin of Mathematical Biology, 2016, 78, 72-109.	0.9	12
197	Visualizing mesoderm and neural crest cell dynamics during chick head morphogenesis. Developmental Biology, 2020, 461, 184-196.	0.9	12
198	A predictive model for color pattern formation in the butterfly wing of {it Papilio dardanus}. Hiroshima Mathematical Journal, 2002, 32, 325.	0.1	11

#	Article	IF	CITATIONS
199	Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions. Chaos, 2007, 17, 037106.	1.0	11
200	Modelling acidosis and the cell cycle in multicellular tumour spheroids. Journal of Theoretical Biology, 2012, 298, 107-115.	0.8	11
201	Editorial Special Section on Multiscale Cancer Modeling. IEEE Transactions on Biomedical Engineering, 2017, 64, 501-503.	2.5	11
202	Superradiant Cancer Hyperthermia Using a Buckyball Assembly of Quantum Dot Emitters. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	1.9	11
203	Comparative study between discrete and continuum models for the evolution of competing phenotype-structured cell populations in dynamical environments. Physical Review E, 2020, 102, 042404.	0.8	11
204	Mathematical models in morphogenesis. Lecture Notes in Mathematics, 1999, , 151-189.	0.1	10
205	Fast solvers for optimal control problems from pattern formation. Journal of Computational Physics, 2016, 304, 27-45.	1.9	10
206	Introduction to †Recent progress and open frontiers in Turing's theory of morphogenesis'. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200280.	1.6	10
207	An Envelope Method for Analyzing Sequential Pattern Formation. SIAM Journal on Applied Mathematics, 2000, 61, 213-231.	0.8	9
208	A Modified OsterMurrayHarris Mechanical Model of Morphogenesis. SIAM Journal on Applied Mathematics, 2013, 73, 2124-2142.	0.8	9
209	Comparing methods for modelling spreading cell fronts. Journal of Theoretical Biology, 2014, 353, 95-103.	0.8	9
210	Modelling collective cell behaviour. Discrete and Continuous Dynamical Systems, 2014, 34, 5123-5133.	0.5	9
211	From invasion to latency: intracellular noise and cell motility as key controls of the competition between resource-limited cellular populations. Journal of Mathematical Biology, 2016, 72, 123-156.	0.8	9
212	The impact of exclusion processes on angiogenesis models. Journal of Mathematical Biology, 2018, 77, 1721-1759.	0.8	9
213	A mathematical model for fibro-proliferative wound healing disorders. Bulletin of Mathematical Biology, 1996, 58, 787-808.	0.9	8
214	Quiescence as a mechanism for cyclical hypoxia and acidosis. Journal of Mathematical Biology, 2007, 55, 767-779.	0.8	8
215	The critical domain size of stochastic population models. Journal of Mathematical Biology, 2017, 74, 755-782.	0.8	8
216	Chronic TNFα-driven injury delays cell migration to villi in the intestinal epithelium. Journal of the Royal Society Interface, 2018, 15, 20180037.	1.5	8

PHILIP K MAINI

5

#	Article	IF	CITATIONS
217	Post-buckling behaviour of a growing elastic rod. Journal of Mathematical Biology, 2019, 78, 777-814.	0.8	8
218	An interdisciplinary approach to investigate collective cell migration in neural crest. Developmental Dynamics, 2020, 249, 270-280.	0.8	8
219	Ab Initio Identification of Novel Regulatory Elements in the Genome of Trypanosoma brucei by Bayesian Inference on Sequence Segmentation. PLoS ONE, 2011, 6, e25666.	1.1	8
220	Rhythmic firing patterns in suprachiasmatic nucleus (SCN): the rÃ1e of circuit interactions. International Journal of Bio-medical Computing, 1995, 38, 23-31.	0.5	7
221	Wound Healing in the Corneal Epithelium: Biological Mechanisms and Mathematical Models. Journal of Theoretical Medicine, 1997, 1, 13-23.	0.5	7
222	Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bulletin of Mathematical Biology, 1997, 59, 517-532.	0.9	7
223	Response kinetics of tethered bacteria to stepwise changes in nutrient concentration. BioSystems, 2003, 71, 51-59.	0.9	7
224	Modelling the within-host growth of viral infections in insects. Journal of Theoretical Biology, 2012, 312, 34-43.	0.8	7
225	An age-structured multi-strain epidemic model for antigenically diverse infectious diseases: A multi-locus framework. Nonlinear Analysis: Real World Applications, 2017, 34, 275-315.	0.9	7
226	A stochastic model for tumour control probability that accounts for repair from sublethal damage. Mathematical Medicine and Biology, 2018, 35, 181-202.	0.8	7
227	Recasting the Cancer Stem Cell Hypothesis: Unification Using a Continuum Model of Microenvironmental Forces. Current Stem Cell Reports, 2019, 5, 22-30.	0.7	7
228	Control of diffusion-driven pattern formation behind a wave of competency. Physica D: Nonlinear Phenomena, 2022, 438, 133297.	1.3	7
229	Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing. Bulletin of Mathematical Biology, 1997, 59, 1077-1100.	0.9	6
230	Some Mathematical Modelling Challenges and Approaches in Cancer. , 2006, , 95-107.		6
231	The mathematics of nature at the Alan Turing centenary. Interface Focus, 2012, 2, 393-396.	1.5	6
232	Unraveling the Control of Cell Cycle Periods during Intestinal Stem Cell Differentiation. Biophysical Journal, 2018, 115, 2250-2258.	0.2	6
233	A mathematical insight into cell labelling experiments for clonal analysis. Journal of Anatomy, 2019, 235, 687-696.	0.9	6

234 Multiscale Modelling of Solid Tumour Growth. , 2008, , 1-25.

#	Article	IF	CITATIONS
235	Age Structure Can Account for Delayed Logistic Proliferation of Scratch Assays. Bulletin of Mathematical Biology, 2019, 81, 2706-2724.	0.9	5
236	Stochastic growth pattern of untreated human glioblastomas predicts the survival time for patients. Scientific Reports, 2020, 10, 6642.	1.6	5
237	Smoothing and the environmental manifold. Ecological Informatics, 2021, 66, 101472.	2.3	5
238	Travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210593.	1.0	5
239	Spatial and spatiotemporal pattern formation in generalised turing systems. Computers and Mathematics With Applications, 1996, 32, 71-77.	1.4	4
240	Making Sense of Complex Phenomena in Biology. Novartis Foundation Symposium, 0, , 53-65.	1.2	4
241	â€ ⁻ Extremotaxis': Computing with a bacterial-inspired algorithm. BioSystems, 2008, 94, 47-54.	0.9	4
242	Optimisation of simulations of stochastic processes by removal of opposing reactions. Journal of Chemical Physics, 2016, 144, 084105.	1.2	4
243	Inferring parameters of prey switching in a 1 predator–2 prey plankton system with a linear preference tradeoff. Journal of Theoretical Biology, 2018, 456, 108-122.	0.8	4
244	Identification of a Novel Clinical Phenotype of Severe Malaria using a Network-Based Clustering Approach. Scientific Reports, 2018, 8, 12849.	1.6	4
245	Comparative analysis of continuum angiogenesis models. Journal of Mathematical Biology, 2021, 82, 21.	0.8	4
246	Evaluating snail-trail frameworks for leader-follower behavior with agent-based modeling. Physical Review E, 2020, 102, 062417.	0.8	4
247	Viewpoint 3. Experimental Dermatology, 2006, 15, 557-559.	1.4	3
248	Leaky vessels as a potential source of stromal acidification in tumours. Journal of Theoretical Biology, 2010, 267, 454-460.	0.8	3
249	The importance of geometry in the corneal micropocket angiogenesis assay. PLoS Computational Biology, 2018, 14, e1006049.	1.5	3
250	Dependence of cell-free-layer width on rheological parameters: Combining empirical data on flow separation at microvascular bifurcations with geometrical considerations. Physical Review E, 2022, 105, 014414.	0.8	3
251	CORNEAL EPITHELIAL WOUND HEALING. Journal of Biological Systems, 1995, 03, 957-965.	0.5	2
252	Speed of reaction diffusion in embryogenesis. Physical Review E, 2007, 76, 011902.	0.8	2

#	Article	IF	CITATIONS
253	Pattern Formation And Wound Healing. Theoria Et Historia Scientiarum, 2002, 6, 161.	0.4	2
254	Dynamics of hierarchical weighted networks of van der Pol oscillators. Chaos, 2020, 30, 123146.	1.0	2
255	Edmund John Crampin 1973–2021. Bulletin of Mathematical Biology, 2022, 84, 35.	0.9	2
256	A NEW NEUROSURGICAL TOOL INCORPORATING DIFFERENTIAL GEOMETRY AND CELLULAR AUTOMATA TECHNIQUES. Biophysical Reviews and Letters, 2008, 03, 103-110.	0.9	1
257	The spatial patterning potential of nonlinear diffusion. Physics of Life Reviews, 2016, 19, 128-130.	1.5	1
258	INTERPLAY OF CELL-CELL SIGNALLING AND MULTICELLULAR MORPHOGENESIS DURING DICTYOSTELIUM AGGREGATION. , 1996, , 15-28.		1
259	Special Collection: Celebrating J.D. Murray's Contributions to Mathematical Biology. Bulletin of Mathematical Biology, 2022, 84, 13.	0.9	1
260	Analysis of a risk-based model for the growth of AIDS infection. Mathematical Biosciences, 1991, 106, 129-150.	0.9	0
261	Bulletin of mathematical biology?facts, figures and comparisons*1. Bulletin of Mathematical Biology, 2004, 66, 595-603.	0.9	Ο
262	Extracellular volume regulation and growth. Medical Hypotheses, 2005, 64, 303-306.	0.8	0
263	Experimental Evidence for Conformational Spread in the Bacterial Switch Complex. Biophysical Journal, 2009, 96, 630a.	0.2	0
264	Distinguishing graded and ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila. Journal of Theoretical Biology, 2011, 285, 136-146.	0.8	0
265	Biomedical Modeling: The Role of Transport and Mechanics. Bulletin of Mathematical Biology, 2013, 75, 1233-1237.	0.9	Ο
266	A mathematical model of the use of supplemental oxygen to combat surgical site infection. Journal of Theoretical Biology, 2019, 466, 11-23.	0.8	0
267	MODELLING ASPECTS OF VASCULAR CANCER DEVELOPMENT. , 2006, , .		0
268	A NEW NEUROSURGICAL TOOL INCORPORATING DIFFERENTIAL GEOMETRY AND CELLULAR AUTOMATA TECHNIQUES. , 2008, , .		0
269	Modelling Aspects of Tumour Metabolism. , 2011, , .		0
270	Modelling collective cell migration. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
271	Making sense of complex phenomena in biology. Novartis Foundation Symposium, 2002, 247, 53-9; discussion 60-5, 84-90, 244-52.	1.2	Ο
272	A Method to Coarse-Grain MultiAgent Stochastic Systems with Regions of Multistability. Multiscale Modeling and Simulation, 2022, 20, 404-432.	0.6	0
273	A multiscale model of complex endothelial cell dynamics in early angiogenesis. , 2021, 17, e1008055.		Ο
274	A multiscale model of complex endothelial cell dynamics in early angiogenesis. , 2021, 17, e1008055.		0
275	A multiscale model of complex endothelial cell dynamics in early angiogenesis. , 2021, 17, e1008055.		Ο
276	A multiscale model of complex endothelial cell dynamics in early angiogenesis. , 2021, 17, e1008055.		0