Stephen M Marek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464772/publications.pdf

Version: 2024-02-01

39 papers 668

687363 13 h-index 25 g-index

42 all docs 42 docs citations

42 times ranked 762 citing authors

#	Article	IF	CITATIONS
1	Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 2010, 123, 390-394.	3 . 6	72
2	Global Gene Expression Profiling During <i>Medicago truncatula–Phymatotrichopsis omnivora</i> Interaction Reveals a Role for Jasmonic Acid, Ethylene, and the Flavonoid Pathway in Disease Development. Molecular Plant-Microbe Interactions, 2009, 22, 7-17.	2.6	65
3	Silicon Supplements Affect Horticultural Traits of Greenhouse-produced Ornamental Sunflowers. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 236-239.	1.0	64
4	Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 2003, 40, 126-137.	2.1	59
5	Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 2009, 119, 297-301.	3.6	44
6	Development of a Rapid, Sensitive, and Field-Deployable Razor Ex BioDetection System and Quantitative PCR Assay for Detection of Phymatotrichopsis omnivora Using Multiple Gene Targets. Applied and Environmental Microbiology, 2013, 79, 2312-2320.	3.1	32
7	ParasiticMeloidogyne and mutualisticAcremonium increase chitinase in tall fescue. Journal of Chemical Ecology, 1992, 18, 1107-1116.	1.8	31
8	Phymatotrichum (cotton) root rot caused by <i>Phymatotrichopsis omnivora</i> : retrospects and prospects. Molecular Plant Pathology, 2010, 11, 325-334.	4.2	30
9	A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes. International Journal of Data Mining and Bioinformatics, 2015, 12, 115.	0.1	26
10	Molecular systematics of the cotton root rot pathogen, <1>Phymatotrichopsis omnivora 1 . Persoonia: Molecular Phylogeny and Evolution of Fungi, 2009, 22, 63-74.	4.4	24
11	<i>Fusarium</i> spp., <i>Cylindrocarpon</i> spp., and Environmental Stress in the Etiology of a Canker Disease of Cold-Stored Fruit and Nut Tree Seedlings in California. Plant Disease, 2013, 97, 259-270.	1.4	22
12	Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus <i>Pecoramyces ruminantium</i> strain C1A. PeerJ, 2018, 6, e4276.	2.0	17
13	Influence of Temperature and Time of Year on Colonization of Bermudagrass Roots by Ophiosphaerella herpotricha. Plant Disease, 2006, 90, 1326-1330.	1.4	15
14	Infection and Colonization of Turf-Type Bermudagrass by <i>Ophiosphaerella herpotricha</i> Expressing Green or Red Fluorescent Proteins. Phytopathology, 2010, 100, 415-423.	2.2	15
15	Inferring the presence of aflatoxin-producing Aspergillus flavus strains using RNA sequencing and electronic probes as a transcriptomic screening tool. PLoS ONE, 2018, 13, e0198575.	2.5	13
16	Morphological and molecular characterisation of Puccinia lagenophorae, now present in central North America. Annals of Applied Biology, 2005, 147, 35-42.	2.5	12
17	Population Structure of <i>Pythium irregulare</i> , <i>P. ultimum</i> , and <i<p. i="" sylvaticum<=""> in Forest Nursery Soils of Oregon and Washington. Phytopathology, 2015, 105, 684-694.</i<p.>	2.2	12
18	Development of simple sequence repeat (SSR) markers for discrimination among isolates of Fusarium proliferatum. Journal of Microbiological Methods, 2016, 126, 12-17.	1.6	12

#	Article	IF	Citations
19	Effect of Moisture Content and Inoculum Size on Cell Wall Composition and Ethanol Yield from Switchgrass after Solid-State <i>Pleurotus ostreatus</i> Treatment. Transactions of the ASABE, 2018, 61, 1997-2006.	1.1	12
20	Molecular Identification and Multilocus Phylogeny of <i>Ophiosphaerella</i> Species Associated with Spring Dead Spot of Bermudagrass. Crop Science, 2017, 57, S-249.	1.8	11
21	Species Composition and Seasonal Occurrence of <l>Phyllophaga</l> (Coleoptera:) Tj ETQq1 1 0.7843 Entomology, 2008, 101, 1624-1632.	314 rgBT / 1.8	Overlock 10 10
22	Determination of Chitinase Activity in Tall Fescue by Near Infrared Reflectance Spectroscopy. Crop Science, 1994, 34, 1070-1073.	1.8	8
23	Silver Stain Detection of Chitinolytic Enzymes after Polyacrylamide Gel Electrophoresis. Analytical Biochemistry, 1995, 230, 184-185.	2.4	8
24	Highly Sensitive End-Point PCR and SYBR Green qPCR Detection of <i>Phymatotrichopsis omnivora</i> Causal Fungus of Cotton Root Rot. Plant Disease, 2014, 98, 1205-1212.	1.4	8
25	A step towards validation of high-throughput sequencing for the identification of plant pathogenic oomycetes. Phytopathology, 2022, , .	2.2	8
26	Identification and characterization of simple sequence repeats (SSRs) for population studies of Puccinia novopanici. Journal of Microbiological Methods, 2017, 139, 113-122.	1.6	6
27	CORRELATION BETWEEN TISSUE AND SUBSTRATE SILICON CONCENTRATION OF GREENHOUSE PRODUCED ORNAMENTAL SUNFLOWERS. Journal of Plant Nutrition, 2010, 34, 217-223.	1.9	5
28	Infection and Colonization of Several Bermudagrasses by <i>Ophiosphaerella korrae </i> Phytopathology, 2015, 105, 656-661.	2.2	4
29	The effect of prescribed fire on Biscogniauxia infection and l´13C in an upland oak-pine forest. Forest Ecology and Management, 2019, 451, 117525.	3.2	4
30	Races, disease symptoms and genetic variability in Pyrenophora tritici-repentis isolates from Oklahoma that cause tan spot of winter wheat. Cereal Research Communications, $0, 1$.	1.6	4
31	The first genomic resources for Phymatotrichopsis omnivora, a soil-borne pezizomycete pathogen with a broad host range. Phytopathology, 2021, , PHYTO01210014A.	2.2	3
32	First Report of Ergot of Bermudagrass Caused by Claviceps cynodontis in Oklahoma. Plant Disease, 2006, 90, 376-376.	1.4	3
33	First Report of Dollar Spot of Buffalograss Caused by <i>Sclerotinia homoeocarpa</i> in Oklahoma. Plant Disease, 2008, 92, 1249-1249.	1.4	3
34	Chitinase Activity in Tall Fescue Seedlings as Affected by Cultivar, Seedling Development, and Ethephon. Crop Science, 2000, 40, 713-716.	1.8	2
35	A noncanonical poly(A) RNA polymerase gene affects morphology in Phoma medicaginis. Fungal Genetics and Biology, 2018, 111, 47-59.	2.1	1
36	Unique gene Pmhyp controlling melanization of pycnidia in Phoma medicaginis. Fungal Genetics and Biology, 2019, 125, 53-59.	2.1	1

3

#	Article	IF	CITATIONS
37	Effects of Copper, Manganese, and Glucose on the Induction of Ligninolytic Enzymes Produced by <i>Pleurotus ostreatus</i> during Fungal Pretreatment of Switchgrass. Transactions of the ASABE, 2019, 62, 1673-1681.	1.1	1
38	Genetic Diversity and Potential Inoculum Sources of <i>Fusarium</i> Species Causing Cankers in Bareroot-Propagated Almond Trees in California Nurseries. Plant Disease, 2021, , .	1.4	1
39	Reactive oxygen species production in response toOphiosphaerellaspp. colonization of bermudagrass roots. Acta Horticulturae, 2016, , 41-48.	0.2	0