
David Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 2015, 12, 525-542.	1.0	1,134
2	Urban flood impact assessment: A state-of-the-art review. Urban Water Journal, 2015, 12, 14-29.	1.0	441
3	Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research, 2017, 115, 195-209.	5.3	420
4	Decision support for sustainable option selection in integrated urban water management. Environmental Modelling and Software, 2008, 23, 1448-1460.	1.9	235
5	A global analysis approach for investigating structural resilience in urban drainage systems. Water Research, 2015, 81, 15-26.	5.3	213
6	Reliable, resilient and sustainable water management: the Safe & SuRe approach. Global Challenges, 2017, 1, 63-77.	1.8	176
7	Performance of a large building rainwater harvesting system. Water Research, 2012, 46, 5127-5134.	5.3	173
8	At-source domestic wastewater quality. Urban Water, 1999, 1, 49-55.	0.5	160
9	Global resilience analysis of water distribution systems. Water Research, 2016, 106, 383-393.	5.3	148
10	Simulating the performance of rainwater collection and reuse systems using behavioural models. Building Services Engineering Research and Technology, 2000, 21, 99-106.	0.9	142
11	Scenario Archetypes: Converging Rather than Diverging Themes. Sustainability, 2012, 4, 740-772.	1.6	136
12	Towards sustainable urban drainage. Water Science and Technology, 1997, 35, 53-63.	1.2	135
13	Sustainability Criteria for Decision Support in the UK Water Industry. Journal of Environmental Planning and Management, 2002, 45, 285-301.	2.4	129
14	Multiple objective optimal control of integrated urban wastewater systems. Environmental Modelling and Software, 2008, 23, 225-234.	1.9	129
15	URBAN DRAINAGE IN THE 21ST CENTURY: ASSESSMENT OF NEW TECHNOLOGY ON THE BASIS OF GLOBAL MATERIAL FLOWS. Water Science and Technology, 1994, 30, 1-12.	1.2	126
16	Distributed Water Infrastructure for Sustainable Communities. Water Resources Management, 2010, 24, 2795-2816.	1.9	126
17	A New Approach to Urban Water Management: Safe and Sure. Procedia Engineering, 2014, 89, 347-354.	1.2	125
18	Topological attributes of network resilience: A study in water distribution systems. Water Research, 2018, 143, 376-386.	5.3	123

#	Article	IF	CITATIONS
19	Integrating simulation models with a view to optimal control of urban wastewater systems. Environmental Modelling and Software, 2005, 20, 415-426.	1.9	116
20	Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. Journal of Environmental Management, 2012, 112, 1-9.	3.8	112
21	Rainwater harvesting: model-based design evaluation. Water Science and Technology, 2010, 61, 85-96.	1.2	111
22	Benchmarking sustainability in cities: The role of indicators and future scenarios. Global Environmental Change, 2012, 22, 245-254.	3.6	105
23	Fuzzy Logic Spatial Decision Support System for Urban Water Management. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 69-77.	1.3	103
24	Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Research, 2014, 55, 52-62.	5.3	102
25	An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making. Environmental Science & Technology, 2015, 49, 8307-8314.	4.6	102
26	Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal, 2020, 398, 125440.	6.6	102
27	Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental Modelling and Software, 2006, 21, 69-84.	1.9	101
28	Resilience theory incorporated into urban wastewater systems management. State of the art. Water Research, 2017, 115, 149-161.	5.3	94
29	Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Science of the Total Environment, 2006, 367, 58-70.	3.9	92
30	Stepwise pH control to promote synergy of chemical and biological processes for augmenting short-chain fatty acid production from anaerobic sludge fermentation. Water Research, 2019, 155, 193-203.	5.3	92
31	New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: the CORFU approach. Environmental Science and Policy, 2011, 14, 864-873.	2.4	89
32	Self-Cleansing Sewer Design Based on Sediment Transport Principles. Journal of Hydraulic Engineering, 2003, 129, 276-282.	0.7	86
33	Copula-based frequency analysis of overflow and flooding in urban drainage systems. Journal of Hydrology, 2014, 510, 49-58.	2.3	85
34	Forces on sanitary solids in small sewers. Water Science and Technology, 2005, 52, 85-92.	1.2	81
35	Measurement and modelling of quality changes in stored untreated grey water. Urban Water, 2000, 1, 293-306.	0.5	78
36	Is combined sewer overflow spill frequency/volume a good indicator of receiving water quality impact?. Urban Water, 2002, 4, 181-189.	0.5	78

#	Article	IF	CITATIONS
37	Rainwater Harvesting Typologies for UK Houses: A Multi Criteria Analysis of System Configurations. Water (Switzerland), 2016, 8, 129.	1.2	77
38	Evolving wastewater infrastructure paradigm to enhance harmony with nature. Science Advances, 2018, 4, eaaq0210.	4.7	73
39	Environmental implications of water efficient microcomponents in residential buildings. Science of the Total Environment, 2010, 408, 5828-5835.	3.9	70
40	The blue-green path to urban flood resilience. Blue-Green Systems, 2020, 2, 28-45.	0.6	70
41	Characterising the quantity and quality of domestic wastewater inflows. Water Science and Technology, 1995, 31, 13-24.	1.2	69
42	Guidelines for Greywater Re-Use: Health Issues. Water and Environment Journal, 1999, 13, 322-326.	1.0	69
43	The Historical Development of Sewers Worldwide. Sustainability, 2014, 6, 3936-3974.	1.6	69
44	Reliability Indicators for Water Distribution System Design: Comparison. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 160-168.	1.3	69
45	Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty. Environmental Science & Technology, 2018, 52, 9008-9021.	4.6	67
46	Life Cycle Impact Assessment of Greywater Recycling Technologies for New Developments. Environmental Monitoring and Assessment, 2007, 129, 27-35.	1.3	65
47	Towards resource-efficient and service-oriented integrated infrastructure operation. Technological Forecasting and Social Change, 2015, 92, 40-52.	6.2	65
48	GIS supported evaluation of source control applicability in urban areas. Water Science and Technology, 1999, 39, 243-252.	1.2	63
49	Intermittent water supply systems: causal factors, problems and solution options. Urban Water Journal, 2018, 15, 488-500.	1.0	62
50	Impacts of residence time during storage on potential of water saving for grey water recycling system. Water Research, 2010, 44, 267-277.	5.3	61
51	Water saving potential of domestic water reuse systems using greywater and rainwater in combination. Water Science and Technology, 1999, 39, 25-32.	1.2	57
52	The influence of dwelling occupancy and day of the week on domestic appliance wastewater discharges. Building and Environment, 1993, 28, 73-79.	3.0	56
53	From hazard to impact: flood damage assessment tools for mega cities. Natural Hazards, 2016, 82, 857-890.	1.6	55
54	Gross solids transport in small diameter sewers. Water Science and Technology, 1996, 33, 25-30.	1.2	54

#	Article	IF	CITATIONS
55	Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resources Research, 2011, 47, .	1.7	52
56	Modelling, Simulation and Control of Urban Wastewater Systems. , 2002, , .		51
57	A framework to support decision making in the selection of sustainable drainage system design alternatives. Journal of Environmental Management, 2017, 201, 145-152.	3.8	51
58	The suspended solids trap efficiency of the roadside gully pot. Water Research, 1995, 29, 719-729.	5.3	50
59	Making Asset Investment Decisions for Wastewater Systems That Include Sustainability. Journal of Environmental Engineering, ASCE, 2008, 134, 200-209.	0.7	50
60	Harvested rainwater quality: the importance of appropriate design. Water Science and Technology, 2010, 61, 1707-1714.	1.2	50
61	Benchmarking energy consumption and <scp>CO</scp> ₂ emissions from rainwaterâ€harvesting systems: an improved method by proxy. Water and Environment Journal, 2012, 26, 184-190.	1.0	48
62	Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment. Water Research, 2013, 47, 4652-4665.	5.3	48
63	Urban Drainage. , 0, , .		48
64	Identifying sensitive sources and key control handles for the reduction of greenhouse gas emissions from wastewater treatment. Water Research, 2014, 62, 249-259.	5.3	47
65	Surface water sewer misconnections in England and Wales: Pollution sources and impacts. Science of the Total Environment, 2015, 526, 98-109.	3.9	47
66	Small scale water recycling systems - risk assessment and modelling. Water Science and Technology, 2001, 43, 83-90.	1.2	46
67	Water quality permitting: From end-of-pipe to operational strategies. Water Research, 2016, 101, 114-126.	5.3	45
68	Domestic WC usage patterns. Building and Environment, 1996, 31, 385-392.	3.0	44
69	Rainwater harvesting in the UK: Socio-technical theory and practice. Technological Forecasting and Social Change, 2012, 79, 1354-1361.	6.2	44
70	Septic tanks: Problems and practice. Building and Environment, 1995, 30, 419-425.	3.0	43
71	Modeling Dry Weather Wastewater Flow in Sewer Networks. Journal of Environmental Engineering, ASCE, 1995, 121, 161-173.	0.7	43
72	The impact of new developments on river water quality from an integrated system modelling perspective. Science of the Total Environment, 2009, 407, 1257-1267.	3.9	43

#	Article	IF	CITATIONS
73	Pipe Failure Prediction in Water Distribution Systems Considering Static and Dynamic Factors. Procedia Engineering, 2017, 186, 117-126.	1.2	42
74	Evaluation of functional resilience in urban drainage and flood management systems using a global analysis approach. Urban Water Journal, 2017, 14, 727-736.	1.0	42
75	A Smallâ€Scale Study of Wastewater Discharges from Domestic Appliances. Water and Environment Journal, 1991, 5, 178-184.	1.0	41
76	Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment. Sustainability Science, 2017, 12, 319-331.	2.5	41
77	Pipeline failure prediction in water distribution networks using evolutionary polynomial regression combined with <i>K</i> -means clustering. Urban Water Journal, 2017, 14, 737-742.	1.0	41
78	Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nature Communications, 2019, 10, 2627.	5.8	40
79	Design Robustness of Local Water-Recycling Schemes. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 531-538.	1.3	39
80	Clustering analysis of water distribution systems: identifying critical components and community impacts. Water Science and Technology, 2014, 70, 1764-1773.	1.2	39
81	Cost-Effective River Water Quality Management using Integrated Real-Time Control Technology. Environmental Science & Technology, 2017, 51, 9876-9886.	4.6	39
82	Water Distribution Networks Resilience Analysis: a Comparison between Graph Theory-Based Approaches and Global Resilience Analysis. Water Resources Management, 2019, 33, 2925-2940.	1.9	39
83	Sustainable decision making for the UK water industry. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2003, 156, 41-49.	0.4	38
84	Sustainable Disposal of Domestic Sanitary Waste. Journal of Environmental Engineering, ASCE, 2005, 131, 206-215.	0.7	38
85	Optimal Distribution and Control of Storage Tank to Mitigate the Impact of New Developments on Receiving Water Quality. Journal of Environmental Engineering, ASCE, 2010, 136, 335-342.	0.7	38
86	MODELLING THE IMPACTS OF DOMESTIC WATER CONSERVATION ON THE SUSTAIN ABILITY OF THE URBAN SEWERAGE SYSTEM. Water and Environment Journal, 2005, 19, 49-56.	1.0	37
87	Rainwater harvesting in the UK: exploring water-user perceptions. Urban Water Journal, 2013, 10, 112-126.	1.0	37
88	Enhancing resilience in urban water systems for future cities. Water Science and Technology: Water Supply, 2015, 15, 1343-1352.	1.0	37
89	Design and operation of urban wastewater systems considering reliability, risk and resilience. Water Research, 2018, 147, 1-12.	5.3	37
90	Using genetic algorithms to calibrate a water quality model. Science of the Total Environment, 2007, 374, 260-272.	3.9	36

#	Article	IF	CITATIONS
91	State of SuDS delivery in the United Kingdom. Water and Environment Journal, 2018, 32, 9-16.	1.0	36
92	Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. Journal of Cleaner Production, 2018, 172, 2167-2173.	4.6	36
93	Guidelines for the Use of Unmanned Aerial Systems in Flood Emergency Response. Water (Switzerland), 2020, 12, 521.	1.2	33
94	ls green infrastructure a viable strategy for managing urban surface water flooding?. Urban Water Journal, 2020, 17, 598-608.	1.0	32
95	Aspects of Surface Sediment Characteristics on an Urban Catchment in London. Water Science and Technology, 1992, 25, 13-19.	1.2	31
96	SEDIMENT TRANSPORT IN SEWERS PART 1: BACKGROUND Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, 1996, 118, 103-112.	0.6	31
97	Creenhouse gas emissions from integrated urban drainage systems: Where do we stand?. Journal of Hydrology, 2018, 559, 307-314.	2.3	31
98	A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water Journal, 2018, 15, 427-436.	1.0	31
99	Catchment & sewer network simulation model to benchmark control strategies within urban wastewater systems. Environmental Modelling and Software, 2016, 78, 16-30.	1.9	30
100	Futures: an exploration of scenarios for sustainable urban water management. Water Policy, 2008, 10, 345-373.	0.7	29
101	Implications of Urban Form on Water Distribution Systems Performance. Water Resources Management, 2014, 28, 83-97.	1.9	29
102	A stochastic approach for automatic generation of urban drainage systems. Water Science and Technology, 2009, 59, 1137-1143.	1.2	28
103	Performance Evaluation of Porous Graphene as Filter Media for the Removal of Pharmaceutical/Emerging Contaminants from Water and Wastewater. Nanomaterials, 2021, 11, 79.	1.9	28
104	Movement mechanisms of gross solids in intermittent flow. Water Science and Technology, 2003, 47, 45-50.	1.2	26
105	Spatial decisions under uncertainty: fuzzy inference in urban water management. Journal of Hydroinformatics, 2004, 6, 3-18.	1.1	26
106	Assessment of gully pot management strategies for runoff quality control using a dynamic model. Science of the Total Environment, 2002, 295, 115-129.	3.9	25
107	Sewer storage tank performance under climate change. Water Science and Technology, 2007, 56, 29-35.	1.2	25
108	Robust rainwater harvesting: probabilistic tank sizing for climate change adaptation. Journal of Water and Climate Change, 2014, 5, 526-539.	1.2	25

#	Article	IF	CITATIONS
109	Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions. Urban Water Journal, 2014, 11, 91-107.	1.0	24
110	Does carbon reduction increase sustainability? A study in wastewater treatment. Water Research, 2015, 87, 522-530.	5.3	24
111	Exploring wastewater system performance under future threats: Does enhancing resilience increase sustainability?. Water Research, 2019, 149, 448-459.	5.3	24
112	Reliable, Robust, and Resilient System Design Framework with Application to Wastewater-Treatment Plant Control. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	22
113	Rapid assessment of surface-water flood-management options in urban catchments. Urban Water Journal, 2018, 15, 210-217.	1.0	22
114	A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience. Sustainability, 2020, 12, 1797.	1.6	22
115	Use of Flow Meters for Managing Water Supply Networks. Journal of Water Resources Planning and Management - ASCE, 2004, 130, 171-179.	1.3	21
116	Economic assessment tool for greywater recycling systems. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2005, 158, 155-161.	0.4	21
117	Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability. Urban Water Journal, 2014, 11, 573-583.	1.0	21
118	Optimal Rehabilitation of Water Distribution Systems Using a Cluster-Based Technique. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	21
119	Moving to a future of smart stormwater management: A review and framework for terminology, research, and future perspectives. Water Research, 2022, 218, 118409.	5.3	21
120	Dynamic modelling of roadside gully pots during wet weather. Water Research, 1999, 33, 3364-3372.	5.3	20
121	Engineers and planners: sustainable water management alliances. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2011, 164, 239-247.	0.4	20
122	Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors. Journal of Hydroinformatics, 2018, 20, 1191-1200.	1.1	20
123	Strategic planning of the integrated urban wastewater system using adaptation pathways. Water Research, 2020, 182, 116013.	5.3	20
124	SWARD: decision support processes for the UK water industry. Management of Environmental Quality, 2003, 14, 444-459.	2.2	19
125	Modelling the future impacts of urban spatial planning on the viability of alternative water supply. Water Research, 2019, 162, 200-213.	5.3	19
126	Upgrading waste stabilization pond effluent by rock filters. Water Science and Technology, 1995, 31, 369-378.	1.2	18

#	Article	IF	CITATIONS
127	Screening for real-time control potential of urban wastewater systems. Journal of Hydrology, 2004, 299, 349-362.	2.3	18
128	Rainwater Harvesting and Social Networks: Visualising Interactions for Niche Governance, Resilience and Sustainability. Water (Switzerland), 2016, 8, 526.	1.2	18
129	Attribute-based intervention development for increasing resilience of urban drainage systems. Water Science and Technology, 2018, 77, 1757-1764.	1.2	18
130	A multi-objective evolutionary programming approach to the â€~object location' spatial analysis and optimisation problem within the urban water management domain. Civil Engineering and Environmental Systems, 2005, 22, 85-101.	0.4	17
131	Coping with Drought: Perceptions, Intentions and Decision-Stages of South West England Households. Water Resources Management, 2019, 33, 1185-1202.	1.9	17
132	Optimal Location of Valves to Improve Equity in Intermittent Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	17
133	Useful indicators of urban sustainability: Some methodological issues. Local Environment, 1999, 4, 137-149.	1.1	16
134	Gross solid transport in sewers. Proceedings of the Institution of Civil Engineers Water and Maritime Engineering, 2003, 156, 175-183.	0.3	16
135	An investigation of domestic water consumption through taps and its impact on urban water flows. Water Science and Technology: Water Supply, 2007, 7, 69-76.	1.0	16
136	An evolutionary Bayesian belief network methodology for participatory decision making under uncertainty: An application to groundwater management. Integrated Environmental Assessment and Management, 2012, 8, 456-461.	1.6	16
137	An integrated system dynamics – cellular automata model for distributed water-infrastructure planning. Water Science and Technology: Water Supply, 2016, 16, 1519-1527.	1.0	16
138	Performance evaluation of conventional and water saving taps. Science of the Total Environment, 2016, 541, 815-824.	3.9	16
139	Multifunctional urban flood resilience enhancement strategies. Water Management, 2017, 170, 115-127.	0.4	16
140	Modelling Drainage Performance in an Indian Catchment. Water and Environment Journal, 1997, 11, 31-38.	1.0	15
141	An Assessment of Water Demand Management Options from a Systems Approach. Water and Environment Journal, 2000, 14, 171-178.	1.0	15
142	Urban futures and the code for sustainable homes. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 37-58.	0.4	15
143	Twin-Hierarchy Decomposition for Optimal Design of Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	15
144	Performance indicators for urban storm drainage in developing countries. Urban Water, 2002, 4, 137-144.	0.5	14

#	Article	IF	CITATIONS
145	Simulation of urban wastewater systems using artificial neural networks: embedding urban areas in integrated catchment modelling. Journal of Hydroinformatics, 2010, 12, 140-149.	1.1	14
146	Rapid surface water intervention performance comparison for urban planning. Water Science and Technology, 2018, 77, 2084-2092.	1.2	14
147	A realâ€time pluvial flood forecasting system for Castries, St. Lucia. Journal of Flood Risk Management, 2018, 11, .	1.6	14
148	Comparing costâ€effectiveness of surface water flood management interventions in a UK catchment. Journal of Flood Risk Management, 2019, 12, e12523.	1.6	14
149	Battle of Postdisaster Response and Restoration. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 04020067.	1.3	14
150	Capturing high-resolution water demand data in commercial buildings. Journal of Hydroinformatics, 2021, 23, 402-416.	1.1	14
151	SEDIMENT TRANSPORT IN SEWERS PART 2: DESIGN Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, 1996, 118, 113-120.	0.6	13
152	Identification and modelling of dry weather processes in gully pots. Water Research, 2002, 36, 1351-1359.	5.3	13
153	Scenario-based sustainable water management and urban regeneration. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 89-98.	0.4	13
154	Mapping urban infrastructure interdependencies and fuzzy risks. Procedia Engineering, 2018, 212, 816-823.	1.2	13
155	Back to the future: assessing the damage of 2004 Dhaka flood in the 2050 urban environment. Journal of Flood Risk Management, 2018, 11, .	1.6	13
156	Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	0.6	13
157	Re-distributed manufacturing and the food-water-energy nexus: opportunities and challenges. Production Planning and Control, 2019, 30, 593-609.	5.8	13
158	A study of the Resilience Analysis Grid method and its applicability to the water sector in England and Wales. Water and Environment Journal, 2020, 34, 623-633.	1.0	13
159	Making More Sustainable Decisions for Asset Investment in the Water Industry - Sustainable Water Industry Asset Resource Decisions - The SWARD Project. , 2002, , 1.		12
160	Characterisation of pollutants washed off from road surfaces during wet weather. Urban Water Journal, 2005, 2, 171-182.	1.0	12
161	A suitability evaluation tool for siting wastewater treatment facilities in new urban developments. Urban Water Journal, 2007, 4, 61-78.	1.0	12
162	Use of surrogate modelling for multiobjective optimisation of urban wastewater systems. Water Science and Technology, 2009, 60, 1641-1647.	1.2	12

#	Article	IF	CITATIONS
163	Causes of intermittent water supply in Lusaka City, Zambia. Water Practice and Technology, 2018, 13, 335-345.	1.0	12
164	Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis. Environment International, 2019, 133, 105266.	4.8	12
165	A Critical Evaluation of the Water Supply and Stormwater Management Performance of Retrofittable Domestic Rainwater Harvesting Systems. Water (Switzerland), 2020, 12, 1184.	1.2	12
166	Reducing life-cycle carbon footprints in the redesign of water distribution systems. Journal of Water and Climate Change, 2013, 4, 176-192.	1.2	11
167	Exploring the Spatial Impact of Green Infrastructure on Urban Drainage Resilience. Water (Switzerland), 2021, 13, 1789.	1.2	11
168	Modular interdependency analysis for water distribution systems. Water Research, 2021, 201, 117320.	5.3	11
169	General resilience: Conceptual formulation and quantitative assessment for intervention development in the urban wastewater system. Water Research, 2022, 211, 118108.	5.3	11
170	Water management at BedZED: some lessons. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2008, 161, 113-122.	0.4	10
171	Frequency analysis of river water quality using integrated urban wastewater models. Water Science and Technology, 2012, 65, 2112-2117.	1.2	10
172	COVIDâ€19 and the UK water sector: Exploring organizational responses through a resilience framework. Water and Environment Journal, 2022, 36, 161-171.	1.0	10
173	A model for the movement of large solids in small sewers. Water Science and Technology, 2005, 52, 69-76.	1.2	9
174	Validating a rapid assessment framework for screening surface water flood risk. Water and Environment Journal, 2019, 33, 427-442.	1.0	9
175	Regulatory Implications of Integrated Real-Time Control Technology under Environmental Uncertainty. Environmental Science & Technology, 2020, 54, 1314-1325.	4.6	9
176	Sustainable decision making for the UK water industry. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2003, 156, 41-49.	0.4	9
177	Gross Solids' Movement in Sewers: Laboratory Studies as a Basis for a Model. Water and Environment Journal, 1996, 10, 52-58.	1.0	8
178	Modelling sustainable urban water management options. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2005, 158, 143-153.	0.4	8
179	A decision support framework for sustainable urban water planning and management in new urban areas. Water Science and Technology, 2006, 54, 451-458.	1.2	8
180	Water demand: estimation, forecasting and management. , 2011, , 49-71.		8

#	Article	IF	CITATIONS
181	The Local Nexus Network: Exploring the Future of Localised Food Systems and Associated Energy and Water Supply. Smart Innovation, Systems and Technologies, 2016, , 613-624.	0.5	8
182	Seasonal Variation of Rainy and Dry Season Per Capita Water Consumption in Freetown City Sierra Leone. Water (Switzerland), 2021, 13, 499.	1.2	8
183	The gully pot as a physical, chemical and biological reactor. Water Science and Technology, 1995, 31, 219-228.	1.2	8
184	Assessment of the sustainability of alternatives for the disposal of domestic sanitary waste. Water Science and Technology, 1999, 39, 251-258.	1.2	8
185	Solids size distribution and transport capacity in an Indian drain. Urban Water, 2000, 2, 357-362.	0.5	7
186	A performance investigation of small-bore sewers. Water Science and Technology, 2007, 55, 85-91.	1.2	7
187	Hierarchical Decomposition of Water Distribution Systems for Background Leakage Assessment. Procedia Engineering, 2014, 89, 53-58.	1.2	7
188	Water Demand Management. Water Intelligence Online, 2015, 5, 9781780402550-9781780402550.	0.3	7
189	Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment. Scientific Reports, 2017, 7, 243.	1.6	7
190	SUPPORTING THE SITING OF NEW URBAN DEVELOPMENTS FOR INTEGRATED URBAN WATER RESOURCE MANAGEMENT. , 2006, , 19-34.		7
191	Laboratory Investigation into the Performance of an Inâ€5ewer Vortex Flow Regulator. Water and Environment Journal, 1993, 7, 182-189.	1.0	6
192	PLANNING SITEâ€SPECIFIC WATERâ€DEMAND MANAGEMENT STRATEGIES. Water and Environment Journal, 2004, 18, 29-35.	1.0	6
193	Sustainability of water management in Zaragoza city. Water and Environment Journal, 2008, 22, 287-296.	1.0	6
194	A framework for supporting rainwater harvesting in the UK. Water Science and Technology, 2009, 60, 2629-2636.	1.2	6
195	Animating inter-organisational resilience communication: A participatory social network analysis of water governance in the UK. Heliyon, 2020, 6, e05069.	1.4	6
196	Development and Application of a Multi-Objective-Optimization and Multi-Criteria-Based Decision Support Tool for Selecting Optimal Water Treatment Technologies in India. Water (Switzerland), 2020, 12, 2836.	1.2	6
197	Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening. Water (Switzerland), 2021, 13, 2027.	1.2	6
198	Screening for real-time control potential of urban wastewater systems. Journal of Hydrology, 2004, 299, 349-362.	2.3	6

#	Article	IF	CITATIONS
199	Improving the performance of an integrated urban wastewater system under future climate change and urbanisation scenarios. Journal of Water and Climate Change, 2013, 4, 232-243.	1.2	5
200	Developing a Decision Support Tool for the Positioning and Sizing of Vortex Flow Controls in Existing Sewer Systems. Procedia Engineering, 2014, 70, 1231-1240.	1.2	5
201	Modelling of vortex flow controls at high drainage flow rates. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2015, 168, 17-34.	0.4	5
202	Global Challenges: Water. Global Challenges, 2017, 1, 61-62.	1.8	5
203	Economic implications of water efficiency measures II: cost-effectiveness of composite strategies. Urban Water Journal, 2017, 14, 531-538.	1.0	5
204	Inter-organisational resilience for flood focussed emergency planning: examining multi-agency connectedness through Twitter. Water Practice and Technology, 2018, 13, 321-327.	1.0	5
205	Distortion equalized fuzzy competitive learning for image data vector quantization. , 0, , .		4
206	Using artificial neural networks to predict vehicle acceleration and yaw angles. , 0, , .		4
207	Laboratory and Field Studies to Support a Model of Gross Solids Transport in Sewers. , 2002, , 1.		4
208	Supporting the choice, siting and evaluation of sustainable drainage systems in new urban developments. Water Practice and Technology, 2007, 2, .	1.0	4
209	Alleviating health risks associated with rainwater harvesting. Journal of Environmental Engineering and Science, 2017, 12, 4-15.	0.3	4
210	Economic implications of water efficiency measures I: assessment methodology and cost-effectiveness of micro-components. Urban Water Journal, 2017, 14, 522-530.	1.0	4
211	Campus Study of the Impact of Ultra-Low Flush Toilets on Sewerage Networks and Water Usage. Water (Switzerland), 2021, 13, 419.	1.2	4
212	Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation. Urban Water Journal, 2021, 18, 885-895.	1.0	4
213	Automation and real-time control of urban wastewater systems: a review of the move towards sustainability. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 751-768.	0.6	4
214	Laboratory study and computer model development related to gross solids' movement in combined sewers. Water Science and Technology, 1996, 33, 39-47.	1.2	4
215	Closure to "Self-Cleansing Sewer Design Based on Sediment Transport Principles―by David Butler, Richard May, and John Ackers. Journal of Hydraulic Engineering, 2004, 130, 723-723.	0.7	3
216	Impact of system factors on the water saving efficiency of household grey water recycling. Desalination and Water Treatment, 2010, 24, 226-235.	1.0	3

#	Article	IF	CITATIONS
217	Developing university–society partnerships with a focus on climate change impact research using the 'business assist' model. Research for All, 0, 2, .	0.1	3
218	Cost-effective leakage reduction through district metering. Water Management, 2007, 160, 181-187.	0.4	2
219	Appraising infrastructure for new towns in Ireland. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2012, 165, 103-121.	0.6	2
220	Towards more resilient and adaptable water distribution systems under future demand uncertainty. Water Science and Technology: Water Supply, 2013, 13, 1495-1506.	1.0	2
221	Water Resource Management: Moving from Single Risk-Based Management to Resilience to Multiple Stressors. Sustainability, 2021, 13, 8609.	1.6	2
222	A methodology for assessing the operational potential of the urban wastewater system using integrated modelling. Water Science and Technology: Water Supply, 2003, 3, 271-277.	1.0	2
223	Green infrastructures and their impact on resilience. , 2020, , .		2
224	Resilience of Interdependent Urban Water Systems. Water (Switzerland), 2022, 14, 440.	1.2	2
225	Novel Grapheneâ€Based Foam Composite As a Highly Reactive Filter Medium for the Efficient Removal of Gemfibrozil from (Waste)Water. Advanced Sustainable Systems, 2022, 6, .	2.7	2
226	TECHNICAL NOTE. AN ALGORITHM FOR THE DETERMINATION OF LIMITING GRADIENTS FOR PIPES FLO WING PARTIALLY FULL Proceedings of the Institution of Civil Engineers, 1986, 81, 125-131.	0.1	1
227	Modelling drainage performance in slums of developing countries: how good is good enough?. Water Science and Technology, 1999, 39, 285-292.	1.2	1
228	DISCUSSION of "Editorial—The peer-review system: prospects and challenges― Hydrological Sciences Journal, 2006, 51, 350-351.	1.2	1
229	Application of Open Source CFD in Urban Water Management. , 2011, , .		1
230	The Use of CFD Coupled with Physical Testing to Develop a New Range of Vortex Flow Controls with Attributes Approaching the Ideal Flow Control Device. , 2011, , .		1
231	A Strategic Framework for Rainwater Harvesting. , 2013, , 209-227.		1
232	From Rainwater Harvesting to Rainwater Management Systems. Green Energy and Technology, 2019, , 3-9.	0.4	1
233	Development of scenarios for evaluating conversion from intermittent to continuous water supply strategies' sustainability implications. Urban Water Journal, 0, , 1-12.	1.0	1
234	Discussion of "Noncircular Sewer Design―by Prabhata K. Swamee, Renu Barghava, and Ashok K. Sharma (August, 1987, Vol. 113, No. 4). Journal of Environmental Engineering, ASCE, 1989, 115, 271-274.	0.7	0

#	Article	IF	CITATIONS
235	Discussion of "Graphs for Hydraulic Design of Sanitary Sewers―by Venkateswarlu Swarna and Prasad M. Modak (May/June 1990, Vol. 116, No. 3). Journal of Environmental Engineering, ASCE, 1992, 118, 630-633.	0.7	0
236	Closure to "Modeling Dry Weather Wastewater Flow in Sewer Networks―by D. Butler and N. J. D. Graham. Journal of Environmental Engineering, ASCE, 1996, 122, 773-773.	0.7	0
237	Closure to "Use of Flow Meters for Managing Water Supply Networks―by Bojana Janković-Nišić, Čedo Maksimović, David Butler, and Nigel J. D. Graham. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 478-479.	1.3	0
238	EDITORIAL MARCH 2008. Water and Environment Journal, 2008, 22, 1-1.	1.0	0
239	Quantifying Long-Term Benefits of Multi-purpose Rainwater Management Systems. Green Energy and Technology, 2019, , 131-135.	0.4	0
240	Water systems modelling, data and control. Urban Water Journal, 2020, 17, 681-681.	1.0	0
241	Optimal Wastewater System Storage Tank Volume to Meet Receiving Water Quality Standards. , 2003, , 203-214.		0
242	The Influence of Household Rainwater Harvesting System Design on Water Supply and Stormwater Management Efficiency. Green Energy and Technology, 2019, , 369-374.	0.4	0
243	Forces on sanitary solids in small sewers. Water Science and Technology, 2005, 52, 85-92.	1.2	0
244	A model for the movement of large solids in small sewers. Water Science and Technology, 2005, 52, 69-76.	1.2	0
245	Benchmarking strategies to control GHG production and emissions. , 2022, , 213-228.		0
246	Towards the coordinated and fit-for-purpose deployment of Unmanned Aerial Systems (UASs) for flood risk management in England. Journal of Water Supply: Research and Technology - AQUA, 0, , .	0.6	0