Haoming Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464318/publications.pdf Version: 2024-02-01

HAOMING WEL

#	Article	IF	CITATIONS
1	Plasmonic Au Nanooctahedrons Enhance Light Harvesting and Photocarrier Extraction in Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 3201-3209.	5.1	25
2	Highly transparent and conductive Î ³ -Cul films grown by simply dipping copper films into iodine solution. Physica B: Condensed Matter, 2019, 573, 45-48.	2.7	23
3	From energy harvesting to topologically insulating behavior: ABO ₃ -type epitaxial thin films and superlattices. Journal of Materials Chemistry C, 2020, 8, 15575-15596.	5.5	22
4	Progress and perspective on CsPbX3 nanocrystals for light emitting diodes and solar cells. Journal of Applied Physics, 2020, 128, .	2.5	20
5	Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chemical Physics, 2020, 530, 110627.	1.9	19
6	Highly Conductive P-Type MAPbI3 Films and Crystals via Sodium Doping. Frontiers in Chemistry, 2020, 8, 754.	3.6	18
7	Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (100) superlattices. Applied Physics Letters, 2015, 106, .	3.3	15
8	Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. Applied Physics Letters, 2016, 109, .	3.3	15
9	Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 2022, 120, .	3.3	13
10	Polarization-enhanced bulk photovoltaic effect of BiFeO3 epitaxial film under standard solar illumination. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126831.	2.1	11
11	Tuning Jahn–Teller distortion and electron localization of LaMnO ₃ epitaxial films via substrate temperature. Journal Physics D: Applied Physics, 2021, 54, 235302.	2.8	11
12	LaNiO ₃ films with tunable out-of-plane lattice parameter and their strain-related electrical properties. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1925-1930.	1.8	9
13	Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition. Journal of Materials Research, 2017, 32, 3936-3946.	2.6	9
14	Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 2021, 129, .	2.5	9
15	Enhanced photoluminescence of CsPbBr _{3-x} I _x nanocrystals via plasmonic Au nanoarrays. Optics Express, 2021, 29, 36988.	3.4	9
16	Epitaxial Growth of Quasi-intrinsic CsPbBr ₃ Film on a SrTiO ₃ Substrate by Pulsed Laser Deposition. ACS Applied Electronic Materials, 2021, 3, 5592-5600.	4.3	7
17	Enhancing the bulk photovoltaic effect by tuning domain walls in epitaxial BiFeO ₃ films. Nanotechnology, 2021, 32, 495402.	2.6	5
18	Copper submicrospheres induced by pulsed laser-irradiation with enhanced tribology properties. New Journal of Chemistry, 2019, 43, 13526-13535.	2.8	4

HAOMING WEI

#	Article	IF	CITATIONS
19	Reduced bandgap and enhanced <i>p</i> -type electrical conduction in Ag-alloyed Cu2O thin films. Journal of Applied Physics, 2020, 128, .	2.5	3
20	Impact of Ferroelectric Domain Structure on Bulk Photovoltaic Effect of Epitaxial BiFe _{1â^²} <i>_x</i> Co <i>_x</i> O ₃ Films. Advanced Electronic Materials, 2022, 8, .	5.1	3
21	Modifying Jahn-Teller distortion by epitaxial stress in LaMnO3 films for tunning electron localization. Journal of Physics Condensed Matter, 2021, , .	1.8	1
22	Dopant compensation in p-type doped MAPb _{1â^'} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	3.3	0