Mats Ekevad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463937/publications.pdf

Version: 2024-02-01

687363 794594 53 522 13 19 citations h-index g-index papers 53 53 53 317 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A method for generating finite element models of wood boards from X-ray computed tomography scans. Computers and Structures, 2022, 260, 106702.	4.4	12
2	Minor cutting edge force contribution in wood bandsawing. Journal of Wood Science, 2022, 68, .	1.9	2
3	Cutting forces and cutting quality in the up-milling of solid wood using ceramic cutting tools. International Journal of Advanced Manufacturing Technology, 2021, 114, 1575-1584.	3.0	7
4	Thin kerf cutting forces of frozen and non-frozen Norway spruce and Scots pine wood. Wood Material Science and Engineering, 2021, 16, 414-420.	2.3	10
5	Diaphragm shear and diagonal compression testing of cross-laminated timber. SN Applied Sciences, 2021, 3, 1.	2.9	0
6	Influence of laminate direction and glue area on in-plane shear modulus of cross-laminated timber. SN Applied Sciences, 2020, 2, 1.	2.9	4
7	Shear modulus analysis of cross-laminated timber using picture frame tests and finite element simulations. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	5
8	Finite element analysis of alternative load paths in a platform-framed CLT building. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2020, 173, 379-390.	0.8	16
9	Impact of board width on in-plane shear stiffness of cross-laminated timber. Engineering Structures, 2019, 196, 109249.	5.3	8
10	Cutting forces and chip formation revisited based on orthogonal cutting of Scots pine. Holzforschung, 2019, 73, 131-138.	1.9	6
11	Picture frame and diagonal compression testing of cross-laminated timber. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	6
12	Finite element analysis of bending stiffness for cross-laminated timber with varying board width. Wood Material Science and Engineering, 2019, 14, 392-403.	2.3	8
13	Effect of rake angle on cutting performance during machining of stone-plastic composite material with polycrystalline diamond cutters. Journal of Mechanical Science and Technology, 2019, 33, 351-356.	1.5	22
14	Performance of stone-plastic composites with different mix ratios during orthogonal cutting. Materials Express, 2019, 9, 749-756.	0.5	3
15	Machinability of Stoneâ€"Plastic Materials During Diamond Planing. Applied Sciences (Switzerland), 2019, 9, 1373.	2.5	8
16	Structural robustness and timber buildings – a review. Wood Material Science and Engineering, 2019, 14, 107-128.	2.3	45
17	In-plane shear modulus of cross-laminated timber by diagonal compression test. BioResources, 2019, 14, 5559-5572.	1.0	6
18	The cutting performance of Al ₂ O ₃ and Si ₃ N ₄ ceramic cutting tools in the milling plywood. Advances in Applied Ceramics, 2018, 117, 16-22.	1.1	23

#	Article	IF	CITATIONS
19	Machinability investigation in turning of high density fiberboard. PLoS ONE, 2018, 13, e0203838.	2.5	2
20	A Review of Structural Robustness with Focus on Timber Buildings. , 2018, , .		1
21	The effects of cutting parameters and tool geometry on cutting forces and tool wear in milling high-density fiberboard with ceramic cutting tools. International Journal of Advanced Manufacturing Technology, 2017, 91, 4033-4041.	3.0	32
22	Motion of Chips When Leaving the Cutting Zone during Chipboard Plane Milling. BioResources, 2017, 13, .	1.0	1
23	Moistening of the wood surface before planing for improved surface quality. Wood Material Science and Engineering, 2016, 11, 156-163.	2.3	9
24	Curve sawing effects on board dimensions when rip-sawing with a circular saw blade. Wood Material Science and Engineering, 2016, 11, 135-141.	2.3	0
25	FINITE ELEMENT ANALYSIS OF TIMBER BEAMS WITH FLAWS. , 2016, , .		3
26	Pressure, Feed Rate, and Abrasive Mass Flow Rate Influence on Surface Roughness for Recombinant Bamboo Abrasive Water Jet Cutting. BioResources, 2015 , 10 , .	1.0	6
27	Influence of pressing parameters on mechanical and physical properties of self-bonded laminated beech boards. Wood Material Science and Engineering, 2015, 10, 205-214.	2.3	10
28	Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources, 2015, 10 , .	1.0	6
29	Crack influence on load-bearing capacity of glued laminated timber using extended finite element modelling. Wood Material Science and Engineering, 2015, 10, 335-343.	2.3	15
30	Cutting Forces and Chip Morphology during Wood Plastic Composites Orthogonal Cutting. BioResources, 2014, 9, .	1.0	13
31	Geometry of kerf when curve sawing with a circular rip-saw. European Journal of Wood and Wood Products, 2014, 72, 809-814.	2.9	3
32	Tool Wear and Machined Surface Roughness during Wood Flour/Polyethylene Composite Peripheral Up-milling using Cemented Tungsten Carbide Tools. BioResources, 2014, 9, .	1.0	14
33	Testing and Modeling of Thrust Force and Torque in Drilling Recombinant Bamboo. BioResources, 2014, 9, .	1.0	2
34	Industrial Sawing of Pinus sylvestris L.: Power Consumption. BioResources, 2013, 8, .	1.0	11
35	Lateral cutting forces for different tooth geometries and cutting directions. Wood Material Science and Engineering, 2012, 7, 126-133.	2.3	5
36	Practical measurement of circular saw vibration mode shapes. Wood Material Science and Engineering, 2012, 7, 162-166.	2.3	3

#	Article	IF	Citations
37	Wear of teeth of circular saw blades. Wood Material Science and Engineering, 2012, 7, 150-153.	2.3	9
38	Wood-chip formation in circular saw blades studied by high-speed photography. Wood Material Science and Engineering, 2012, 7, 115-119.	2.3	5
39	Main cutting force models for two species of tropical wood. Wood Material Science and Engineering, 2012, 7, 143-149.	2.3	20
40	NATURAL FREQUENCIES OF ROLL-TENSIONED CIRCULAR SAWBLADES: EFFECTS OF ROLLER LOADS, NUMBER OF GROOVES, AND GROOVE POSITIONS. BioResources, 2012, 7, .	1.0	13
41	VARIATION OF MODULUS OF ELASTICITY IN THE TANGENTIAL DIRECTION WITH MOISTURE CONTENT AND TEMPERATURE FOR NORWAY SPRUCE (PICEA ABIES). BioResources, 2012, 7, .	1.0	5
42	Choosing green sawing dimensions for Norway spruce from stochastic simulations. Journal of Wood Science, 2011, 57, 94-99.	1.9	2
43	Drying shrinkage of sawn timber of Norway spruce ($\langle i \rangle$ Picea abies $\langle i \rangle$): Industrial measurements and finite element simulations. Wood Material Science and Engineering, 2011, 6, 41-48.	2.3	8
44	Slip between Glue-Laminated Beams in Stress-Laminated Timber Bridges: Finite-Element Model and Full-Scale Destructive Test. Journal of Bridge Engineering, 2011, 16, 188-196.	2.9	8
45	Tool wear for lesser known tropical wood species. Wood Material Science and Engineering, 2011, 6, 155-161.	2.3	9
46	Modelling of adequate pretwist for obtaining straight timber. Wood Material Science and Engineering, 2006, $1,76-84$.	2.3	4
47	Local water vapor diffusion coefficient when drying Norway spruce sapwood. Journal of Wood Science, 2006, 52, 195-201.	1.9	18
48	Twist of wood studs: dependence on spiral grain gradient. Journal of Wood Science, 2005, 51, 455-461.	1.9	9
49	Method to compute fiber directions in wood from computed tomography images. Journal of Wood Science, 2004, 50, 41-46.	1.9	23
50	Influence of pole length and stiffness on the energy conversion in pole-vaulting. Journal of Biomechanics, 1997, 30, 259-264.	2.1	27
51	Simulation of â€~smart' pole vaulting. Journal of Biomechanics, 1995, 28, 1079-1090.	2.1	32
52	Experimental analysis of passively and actively reinforced glued-laminated timber with focus on ductility. Wood Material Science and Engineering, 0 , 1 - 9 .	2.3	1
53	Minor cutting edge angles of sawing teeth: effect on cutting forces in wood. European Journal of Wood and Wood Products, 0, , .	2.9	2