
Aline Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463862/publications.pdf Version: 2024-02-01

ALINE MADTIN

#	Article	IF	CITATIONS
1	The Role of DMP1 in CKD-MBD. Current Osteoporosis Reports, 2021, 19, 500-509.	3.6	4
2	Longâ€Term Effects of <scp>Sglt2</scp> Deletion on Bone and Mineral Metabolism in Mice. JBMR Plus, 2021, 5, e10526.	2.7	5
3	Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Research, 2021, 9, 35.	11.4	24
4	Hypophosphatemic rickets accelerate chondrogenesis and cell trans-differentiation from TMJ chondrocytes into bone cells via a sharp increase in β-catenin. Bone, 2020, 131, 115151.	2.9	11
5	Transcriptomics: a Solution for Renal Osteodystrophy?. Current Osteoporosis Reports, 2020, 18, 254-261.	3.6	3
6	Antagonism Between PEDF and TGF-β Contributes to Type VI Osteogenesis Imperfecta Bone and Vascular Pathogenesis. Journal of Bone and Mineral Research, 2020, 37, 925-937.	2.8	7
7	Ferric citrate reduces fibroblast growth factor 23 levels and improves renal and cardiac function inÂaÂmouse model of chronic kidney disease. Kidney International, 2019, 96, 1346-1358.	5.2	47
8	DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Research, 2019, 7, 12.	11.4	57
9	Bone and heart health in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2019, 28, 297-303.	2.0	9
10	Genetic background influences cardiac phenotype in murine chronic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 1129-1137.	0.7	26
11	Fibroblast Growth Factor 23 Levels Associate with AKI and Death in Critical Illness. Journal of the American Society of Nephrology: JASN, 2017, 28, 1877-1885.	6.1	76
12	Angiotensin-converting enzyme 2 amplification limitedÂto the circulation does not protect miceÂfromÂdevelopment of diabetic nephropathy. Kidney International, 2017, 91, 1336-1346.	5.2	49
13	Fat and Sucrose Intake Induces Obesity-Related Bone Metabolism Disturbances: Kinetic and Reversibility Studies in Growing and Adult Rats. Journal of Bone and Mineral Research, 2016, 31, 98-115.	2.8	23
14	Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney International, 2016, 89, 135-146.	5.2	370
15	Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule. PLoS ONE, 2015, 10, e0142924.	2.5	26
16	Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 2015, 22, 1020-1032.	16.2	432
17	A Comparative Transcriptome Analysis Identifying FGF23 Regulated Genes in the Kidney of a Mouse CKD Model. PLoS ONE, 2012, 7, e44161.	2.5	164
18	Regulation and Function of the FGF23/Klotho Endocrine Pathways. Physiological Reviews, 2012, 92, 131-155.	28.8	471

ALINE MARTIN

#	Article	IF	CITATIONS
19	Bone proteins PHEX and DMP1 regulate fibroblastic growth factor <i>Fgf23</i> expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB Journal, 2011, 25, 2551-2562.	0.5	228
20	Matrix Extracellular Phosphoglycoprotein (MEPE) Is a New Bone Renal Hormone and Vascularization Modulator. Endocrinology, 2009, 150, 4012-4023.	2.8	91
21	Degradation of MEPE, DMP1, and Release of SIBLING ASARM-Peptides (Minhibins): ASARM-Peptide(s) Are Directly Responsible for Defective Mineralization in HYP. Endocrinology, 2008, 149, 1757-1772.	2.8	155
22	Opposite Effects of Leptin on Bone Metabolism: A Dose-Dependent Balance Related to Energy Intake and Insulin-Like Growth Factor-I Pathway. Endocrinology, 2007, 148, 3419-3425.	2.8	98
23	Leptin Modulates both Resorption and Formation while Preventing Disuse-Induced Bone Loss in Tail-Suspended Female Rats. Endocrinology, 2005, 146, 3652-3659.	2.8	118