Xiao-Feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant Mechanism of Betaine without Free Radical Scavenging Ability. Journal of Agricultural and Food Chemistry, 2016, 64, 7921-7930.	2.4	99
2	Structural Characterization of a Novel Polysaccharide from <i>Lepidium meyenii</i> (Maca) and Analysis of Its Regulatory Function in Macrophage Polarization in Vitro. Journal of Agricultural and Food Chemistry, 2017, 65, 1146-1157.	2.4	96
3	Enhancing Asymmetric Reduction of 3-Chloropropiophenone with Immobilized <i>Acetobacter</i> sp. CCTCC M209061 Cells by Using Deep Eutectic Solvents as Cosolvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 718-724.	3.2	58
4	Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates. Biochemical and Biophysical Research Communications, 2014, 452, 888-894.	1.0	52
5	Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (<i>Arachis) Tj ETQq1</i>	1,0,78431 2.4	l4rgBT /O
6	Cellular Transport of Esculin and Its Acylated Derivatives in Caco-2 Cell Monolayers and Their Antioxidant Properties in Vitro. Journal of Agricultural and Food Chemistry, 2017, 65, 7424-7432.	2.4	32
7	Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein. Food Research International, 2014, 64, 931-938.	2.9	31
8	Two novel polysaccharides from the torus of Saussurea laniceps protect against AAPH-induced oxidative damage in human erythrocytes. Carbohydrate Polymers, 2018, 200, 446-455.	5.1	30
9	Biocatalytic synthesis of acylated derivatives of troxerutin: their bioavailability and antioxidant properties in vitro. Microbial Cell Factories, 2018, 17, 130.	1.9	28
10	Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. RSC Advances, 2017, 7, 27017-27023.	1.7	24
11	Global transcriptomic analysis of Cronobacter sakazakii CICC 21544 by RNA-seq under inorganic acid and organic acid stresses. Food Research International, 2020, 130, 108963.	2.9	22
12	Whole-Cell Catalytic Synthesis of Puerarin Monoesters and Analysis of Their Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2019, 67, 299-307.	2.4	20
13	Facile and Efficient Acylation of Bioflavonoids Using Whole-Cell Biocatalysts in Organic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 10662-10672.	3.2	18
14	Antityrosinase Mechanism and Antimelanogenic Effect of Arbutin Esters Synthesis Catalyzed by Whole-Cell Biocatalyst. Journal of Agricultural and Food Chemistry, 2021, 69, 4243-4252.	2.4	18
15	A facile whole-cell biocatalytic approach to regioselective synthesis of monoacylated 1-î²-d-arabinofuranosylcytosine: Influence of organic solvents. Bioresource Technology, 2012, 114, 6-11.	4.8	15
16	Lipaseâ€catalyzed synthesis of longâ€chain cellulose esters using ionic liquid mixtures as reaction media. Journal of Chemical Technology and Biotechnology, 2017, 92, 1203-1210.	1.6	15
17	Highly efficient synthesis of arbutin esters catalyzed by whole cells of <i>Candida parapsilosis </i> . RSC Advances, 2018, 8, 10081-10088.	1.7	15
18	Biocatalytic Synthesis of Lipophilic Baicalin Derivatives as Antimicrobial Agents. Journal of Agricultural and Food Chemistry, 2019, 67, 11684-11693.	2.4	15

XIAO-FENG LI

#	Article	IF	CITATIONS
19	Highly efficient bioconversion of flavonoid glycosides from citrus-processing wastes in solvent-buffer systems. Green Chemistry, 2020, 22, 3196-3207.	4.6	15
20	Highly regioselective enzymatic synthesis of 5′-O-stearate of 1-β-D-arabinofuranosylcytosine in binary organic solvent mixtures. Applied Microbiology and Biotechnology, 2010, 88, 57-63.	1.7	14
21	Organic Solvent-Free Preparation of Chitosan Nanofibers with High Specific Surface Charge and Their Application in Biomaterials. ACS Applied Materials & Interfaces, 2021, 13, 12347-12358.	4.0	14
22	Using ionic liquids in whole-cell biocatalysis for the nucleoside acylation. Microbial Cell Factories, 2014, 13, 143.	1.9	12
23	A new, efficient and highly-regioselective approach to synthesis of 6-O-propionyl-d-glucose by using whole-cell biocatalysts. Biochemical Engineering Journal, 2015, 95, 56-61.	1.8	12
24	Molecular monitoring of disinfection efficacy of <i>E. coli</i> O157:H7 in bottled purified drinking water by quantitative PCR with a novel dye. Journal of Food Processing and Preservation, 2019, 43, e13875.	0.9	12
25	Preparation of High Mechanical Strength Chitosan Nanofiber/NanoSiO2/PVA Composite Scaffolds for Bone Tissue Engineering Using Sol–Gel Method. Polymers, 2022, 14, 2083.	2.0	12
26	Fabrication of highly proton-conductive chitosan whole-bio-membrane materials functionalized with adenine and adenosine monophosphate. Green Chemistry, 2020, 22, 2426-2433.	4.6	11
27	Regioselective synthesis of cytarabine monopropionate by using a fungal whole-cell biocatalyst in nonaqueous medium. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3377-3380.	1.0	10
28	A novel biocatalytic approach to acetylation of 1-β-d-arabinofuranosylcytosine by Aspergillus oryzae whole cell in organic solvents. Applied Microbiology and Biotechnology, 2012, 93, 143-150.	1.7	9
29	Evaluation of the digestion and transport profiles and potential immunocompetence of puerarin and its acylated derivatives. Food and Function, 2021, 12, 5949-5958.	2.1	9
30	The root-like chitosan nanofiber porous scaffold cross-linked by genipin with type I collagen and its osteoblast compatibility. Carbohydrate Polymers, 2022, 285, 119255.	5.1	9
31	One-pot biocatalytic synthesis and antioxidant activities of highly lipophilic naringin derivatives by using bi-functional whole-cells. Food Research International, 2020, 136, 109291.	2.9	8
32	Efficient synthesis of 5′-O-laurate of 1-β-d-arabinofuranosylcytosine via highly regioselective enzymatic acylation in binary solvent mixtures. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4125-4127.	1.0	7
33	Efficient acylation of gastrodin by <i>Aspergillus oryzae</i> whole-cells in non-aqueous media. RSC Advances, 2019, 9, 16701-16712.	1.7	7
34	Preparation of Novel Biodegradable Cellulose Nanocrystal Proton Exchange Membranes for Direct Methanol Fuel-Cell Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 5559-5568.	3.2	7
35	Application of organic solvent system for lipase-catalyzed regioselective benzoylation of 1-12-D-arabinofuranosylcytosine. Biotechnology and Bioprocess Engineering, 2010, 15, 608-613.	1.4	6
36	Real-Time TaqMan PCR for Rapid Detection and Quantification of Coliforms in Chilled Meat. Food Analytical Methods, 2016, 9, 813-822.	1.3	6

Xiao-Feng Li

#	Article	IF	CITATIONS
37	Whole-Cell-Catalyzed Synthesis of Phenolic Glycoside Esters, and Their Antioxidant and Antimelanogenic Properties. Industrial & Engineering Chemistry Research, 2020, 59, 16591-16602.	1.8	6
38	Influence of Organic Solvents on Catalytic Behaviors and Cell Morphology of Whole-Cell Biocatalysts for Synthesis of 5â€2-Arabinocytosine Laurate. PLoS ONE, 2014, 9, e104847.	1.1	6
39	Evaluation of Cronobacter sakazakii biofilm formation after sdiA knockout in different osmotic pressure conditions. Food Research International, 2022, 151, 110886.	2.9	6
40	A one-pot method for lipase-catalyzed synthesis of chitosan palmitate in mixed lonic liquids and its characterization. Biochemical Engineering Journal, 2017, 126, 24-29.	1.8	5
41	In vitro absorption and lipid-lowering activity of baicalin esters synthesized by whole-cell catalyzed esterification. Bioorganic Chemistry, 2022, 120, 105628.	2.0	5
42	Fabrication of a 2,6-diaminopurine-grafted cellulose nanocrystal composite with high proton conductivity. Cellulose, 2022, 29, 2371-2385.	2.4	5
43	Highly efficient whole-cell biosynthesis and cytotoxicity of esculin esters. Journal of Biotechnology, 2021, 337, 46-56.	1.9	4
44	Green synthesis of puerarin acid esters and their oral absorption evaluation in vivo. Journal of Drug Delivery Science and Technology, 2022, 67, 102882.	1.4	4
45	Efficient Enzymatic Synthesis of Lipophilic Phenolic Glycoside Azelaic Acid Esters and Their Depigmenting Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 13102-13112.	2.4	4
46	Comparative transcriptomics to reveal the mechanism of enhanced catalytic activities of Aspergillus niger whole-cells cultured with different inducers in hydrolysis of citrus flavonoids. Food Research International, 2022, 156, 111344.	2.9	4
47	Biocatalytical Acyl-Modification of Puerarin: Shape Gut Microbiota Profile and Improve Short Chain Fatty Acids Production in Rats. Plant Foods for Human Nutrition, 2021, , 1.	1.4	3
48	Preparation of a "Branch-Fruit―structure chitosan nanofiber physical hydrogels with high mechanical strength and pH-responsive controlled drug release properties. RSC Advances, 2022, 12, 17208-17216.	1.7	3
49	Colorimetric sensor based on peroxidase-like activity of chitosan coated on magnetic nanoparticles for rapid detection of the total bacterial count in raw milk. European Food Research and Technology, 0, , 1.	1.6	1