
James C Fleet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4. Immunity, 2014, 41, 296-310.	14.3	708
2	Vitamin D and cancer: a review of molecular mechanisms. Biochemical Journal, 2012, 441, 61-76.	3.7	323
3	Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1146-55.	7.1	318
4	Calcium Transporter 1 and Epithelial Calcium Channel Messenger Ribonucleic Acid Are Differentially Regulated by 1,25 Dihydroxyvitamin D3 in the Intestine and Kidney of Mice. Endocrinology, 2003, 144, 3885-3894.	2.8	218
5	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2010, 19, 713-726.	7.0	192
6	Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 181-195.	6.1	177
7	Intestinal Vitamin D Receptor Is Required for Normal Calcium and Bone Metabolism in Mice. Gastroenterology, 2009, 136, 1317-1327.e2.	1.3	173
8	The role of vitamin D in the endocrinology controlling calcium homeostasis. Molecular and Cellular Endocrinology, 2017, 453, 36-45.	3.2	172
9	Vitamin D Receptor (VDR) Knockout Mice Reveal VDR-Independent Regulation of Intestinal Calcium Absorption and ECaC2 and Calbindin D9k mRNA. Journal of Nutrition, 2003, 133, 374-380.	2.9	164
10	The <i>Bsm</i> I vitamin D receptor restriction fragment length polymorphism (BB) predicts low bone density in premenopausal black and white women. Journal of Bone and Mineral Research, 1995, 10, 985-990.	2.8	160
11	Vitamin D requirements: current and future. American Journal of Clinical Nutrition, 2004, 80, 1735S-1739S.	4.7	139
12	Expansion of Antigen-Specific Regulatory T Cells with the Topical Vitamin D Analog Calcipotriol. Journal of Immunology, 2009, 182, 6071-6078.	0.8	127
13	Molecular actions of vitamin D contributing to cancer prevention. Molecular Aspects of Medicine, 2008, 29, 388-396.	6.4	115
14	Rapid, Membrane-Initiated Actions of 1,25 Dihydroxyvitamin D: What Are They and What Do They Mean?. Journal of Nutrition, 2004, 134, 3215-3218.	2.9	109
15	Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines. American Journal of Physiology - Renal Physiology, 2002, 283, G618-G625.	3.4	94
16	High Dietary Vitamin D Prevents Hypocalcemia and Osteomalacia in CYP27B1 Knockout Mice ,. Journal of Nutrition, 2007, 137, 2608-2615.	2.9	94
17	GATA Factors Regulate Proliferation, Differentiation, and Gene Expression in Small Intestine of Mature Mice. Gastroenterology, 2011, 140, 1219-1229.e2.	1.3	91
18	Animal models of colorectal cancer. Cancer and Metastasis Reviews, 2013, 32, 39-61.	5.9	90

#	Article	IF	CITATIONS
19	Intestinal Calcium Absorption in the Aged Rat: Evidence of Intestinal Resistance to 1,25(OH)2 Vitamin D*. Endocrinology, 1998, 139, 3843-3848.	2.8	84
20	ldentification of osteocalcin mrna in nonosteoid tissue of rats and humans by reverse transcription—polymerase chain reaction. Journal of Bone and Mineral Research, 1994, 9, 1565-1573.	2.8	84
21	1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics, 2010, 11, 26.	2.8	84
22	Serum Metabolite Profiles and Target Tissue Gene Expression Define the Effect of Cholecalciferol Intake on Calcium Metabolism in Rats and Mice. Journal of Nutrition, 2008, 138, 1114-1120.	2.9	80
23	Atherogenic Diets Enhance Endotoxin-Stimulated Interleukin-1 and Tumor Necrosis Factor Gene Expression in Rabbit Aortae ,. Journal of Nutrition, 1992, 122, 294-305.	2.9	75
24	THE GENETICS OF OSTEOPOROSIS: Vitamin D Receptor Polymorphisms. Annual Review of Nutrition, 1998, 18, 233-258.	10.1	74
25	Interleukin-1 gene expression in rabbit vascular tissue in vivo. American Journal of Pathology, 1991, 138, 1005-14.	3.8	74
26	Development and optimization of an LCâ€MS/MSâ€based method for simultaneous quantification of vitamin D ₂ , vitamin D ₃ , 25â€hydroxyvitamin D ₂ and 25â€hydroxyvitamin D ₃ . Journal of Separation Science, 2011, 34, 11-20.	2.5	68
27	Reciprocal Regulation of HFE and Nramp2 Gene Expression by Iron in Human Intestinal Cells. Journal of Nutrition, 1999, 129, 98-104.	2.9	67
28	Inadequate protein intake affects skeletal muscle transcript profiles in older humans. American Journal of Clinical Nutrition, 2007, 85, 1344-1352.	4.7	63
29	Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. Journal of Bone and Mineral Research, 2012, 27, 2097-2107.	2.8	62
30	1α,25-(OH)2-Vitamin D3Analogs with Minimalin VivoCalcemic Activity Can Stimulate Significant Transepithelial Calcium Transport and mRNA Expressionin Vitro. Archives of Biochemistry and Biophysics, 1996, 329, 228-234.	3.0	61
31	Excentric Cleavage Products of β-Carotene Inhibit Estrogen Receptor Positive and Negative Breast Tumor Cell Growth In Vitro and Inhibit Activator Protein-1-Mediated Transcriptional Activation. Journal of Nutrition, 2002, 132, 1368-1375.	2.9	60
32	Gene expression profiling of Caco-2 BBe cells suggests a role for specific signaling pathways during intestinal differentiation. Physiological Genomics, 2003, 13, 57-68.	2.3	59
33	Interleukin-1α Mediates the Antiproliferative Effects of 1,25-Dihydroxyvitamin D3 in Prostate Progenitor/Stem Cells. Cancer Research, 2011, 71, 5276-5286.	0.9	57
34	Dietary Selenium Repletion May Reduce Cancer Incidence in People at High Risk Who Live in Areas with Low Soil Selenium. Nutrition Reviews, 1997, 55, 277-279.	5.8	55
35	Vitamin D Receptor Alleles, Periodontal Disease Progression, and Tooth Loss in the VA Dental Longitudinal Study. Journal of Periodontology, 2003, 74, 161-167.	3.4	51
36	Dietary Vitamin D and Vitamin D Receptor Level Modulate Epithelial Cell Proliferation and Apoptosis in the Prostate. Cancer Prevention Research, 2011, 4, 1617-1625.	1.5	50

#	Article	IF	CITATIONS
37	Sodium-Dependent Phosphate Uptake in the Jejunum Is Post-Transcriptionally Regulated in Pigs Fed a Low-Phosphorus Diet and Is Independent of Dietary Calcium Concentration. Journal of Nutrition, 2010, 140, 731-736.	2.9	49
38	Generation of a Transgenic Mouse for Colorectal Cancer Research with Intestinal Cre Expression Limited to the Large Intestine. Molecular Cancer Research, 2010, 8, 1095-1104.	3.4	49
39	A New Role for Lactoferrin: DNA Binding and Transcription Activation. Nutrition Reviews, 1995, 53, 226-227.	5.8	43
40	Effects of MAPK signaling on 1,25â€dihydroxyvitamin Dâ€mediated CYP24 gene expression in the enterocyteâ€like cell line, Cacoâ€2. Journal of Cellular Physiology, 2009, 219, 132-142.	4.1	43
41	Specific 1,25(OH) ₂ D ₃ -mediated regulation of transcellular calcium transport in Caco-2 cells. American Journal of Physiology - Renal Physiology, 1999, 276, C958-G964.	3.4	42
42	Bioavailability and Efficacy of Vitamin D ₂ from UV-Irradiated Yeast in Growing, Vitamin D-Deficient Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 2341-2346.	5.2	40
43	Intestinal Resistance to 1,25 Dihydroxyvitamin D in Mice Heterozygous for the Vitamin D Receptor Knockout Allele. Endocrinology, 2007, 148, 1396-1402.	2.8	39
44	Vitamin D and the intestine: Review and update. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105501.	2.5	37
45	1,25 Dihydroxycholecalciferol-Mediated Calcium Absorption and Gene Expression Are Higher in Female than in Male Mice. Journal of Nutrition, 2004, 134, 1857-1861.	2.9	34
46	Fluoride-Mediated Elimination of Allyl Sulfones: Application to the Synthesis of a 2,4-Dimethyl-A-ring Vitamin D ₃ Analogue. Journal of Organic Chemistry, 2012, 77, 5132-5138.	3.2	34
47	Gene-by-Diet Interactions Influence Calcium Absorption and Bone Density in Mice. Journal of Bone and Mineral Research, 2014, 29, 657-665.	2.8	32
48	Control of differentiation-induced calbindin-D9kgene expression in Caco-2 cells by cdx-2 and HNF-1α. American Journal of Physiology - Renal Physiology, 2004, 287, G943-G953.	3.4	31
49	Vitamin D Receptor–Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis. Endocrinology, 2017, 158, 1951-1963.	2.8	31
50	1,25–Dihydroxyvitamin D and 25–hydroxyvitamin D—mediated regulation of TRPV6 (a putative epithelial)	Tj FTQq0	0 0 ₃ rgBT /Ove
51	Constitutive activation of the mitogenâ€activated protein kinase pathway impairs vitamin D signaling in human prostate epithelial cells. Journal of Cellular Physiology, 2010, 224, 433-442.	4.1	30
52	Intestinal vitamin D receptor modulates lipid metabolism, adipose tissue inflammation and liver steatosis in obese mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1567-1578.	3.8	30
53	Iron-Induced Metallothionein in Chick Liver: A Rapid, Route-Dependent Effect Independent of Zinc Status. Journal of Nutrition, 1990, 120, 1214-1222.	2.9	29
54	Effect of Cellular Environment on the Selective Activation of the Vitamin D Receptor by 1α,25-Dihydroxyvitamin D3and Its Analog 1α-Fluoro-16-Ene-20-Epi-23-Ene-26,27-Bishomo-25-Hydroxyvitamin D3(Ro-26-9228). Molecular Endocrinology, 2004, 18, 874-887.	3.7	28

#	Article	IF	CITATIONS
55	A general approach to the synthesis of enantiopure 19-nor-Vitamin D3 and its C-2 phosphate analogs prepared from cyclohexadienyl sulfone. Chemical Communications, 2012, 48, 9077.	4.1	28
56	Transgenic expression of the human Vitamin D receptor (hVDR) in the duodenum of VDR-null mice attenuates the age-dependent decline in calcium absorption. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 513-516.	2.5	27
57	Vitamin D Signaling Suppresses Early Prostate Carcinogenesis in TgAPT121 Mice. Cancer Prevention Research, 2019, 12, 343-356.	1.5	27
58	Systems Genetics of Mineral Metabolism. Journal of Nutrition, 2011, 141, 520-525.	2.9	26
59	Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. Journal of Cellular Biochemistry, 2007, 100, 617-628.	2.6	24
60	Vitamin D Receptors: Not Just in the Nucleus Anymore. Nutrition Reviews, 1999, 57, 60-62.	5.8	24
61	Systems genetic analysis of multivariate response to iron deficiency in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1282-R1296.	1.8	24
62	Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice. Journal of Bone and Mineral Research, 2016, 31, 143-151.	2.8	24
63	Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 194-201.	2.5	22
64	The effect of differentiation on 1,25 dihydroxyvitamin Dâ€mediated gene expression in the enterocyteâ€like cell line, Cacoâ€2. Journal of Cellular Physiology, 2009, 218, 113-121.	4.1	20
65	Leptin and Bone: Does the Brain Control Bone Biology?. Nutrition Reviews, 2000, 58, 209-211.	5.8	20
66	Novel Genetic Loci Control Calcium Absorption and Femur Bone Mass as Well as Their Response to Low Calcium Intake in Male BXD Recombinant Inbred Mice. Journal of Bone and Mineral Research, 2016, 31, 994-1002.	2.8	19
67	The Apparent Relation between Plasma 25-Hydroxyvitamin D and Insulin Resistance Is Largely Attributable to Central Adiposity in Overweight and Obese Adults. Journal of Nutrition, 2015, 145, 2683-2689.	2.9	18
68	Analysis of 1,25-Dihydroxyvitamin D ₃ Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 2021, 41, .	2.3	18
69	Molecular Regulation of Calcium Metabolism. , 2006, , 163-189.		18
70	Time-Course Studies of Pancreatic Exocrine Damage Induced by Excess Dietary Zinc in the Chick. Journal of Nutrition, 1990, 120, 389-397.	2.9	17
71	New Support for a Folk Remedy: Cranberry Juice Reduces Bacteriuria and Pyuria in Elderly Women. Nutrition Reviews, 1994, 52, 168-170.	5.8	17
72	Colon-specific tumorigenesis in mice driven by Cre-mediated inactivation of Apc and activation of mutant Kras. Cancer Letters, 2014, 347, 191-195.	7.2	17

#	Article	IF	CITATIONS
73	Tissue-Specific Accumulation of Metallothionein in Chickens as Influenced by the Route of Zinc Administration. Journal of Nutrition, 1988, 118, 176-182.	2.9	16
74	The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males. Journal of Nutritional Biochemistry, 2010, 21, 1076-1082.	4.2	16
75	Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice. Endocrinology, 2016, 157, 470-481.	2.8	15
76	Case-control genome-wide association study of rheumatoid arthritis from Genetic Analysis Workshop 16 using penalized orthogonal-components regression-linear discriminant analysis. BMC Proceedings, 2009, 3, S17.	1.6	14
77	Luminal glucose does not enhance active intestinal calcium absorption in mice: evidence against a role for Cav1.3 as a mediator of calcium uptake during absorption. Nutrition Research, 2015, 35, 1009-1015.	2.9	14
78	Genomic and proteomic approaches for probing the role of vitamin D in health. American Journal of Clinical Nutrition, 2004, 80, 1730S-1734S.	4.7	12
79	Identification of Nramp2 as an Iron Transport Protein: Another Piece of the Intestinal Iron Absorption Puzzle. Nutrition Reviews, 1998, 56, 88-89.	5.8	12
80	Molecular Mechanisms for Regulation of Intestinal Calcium and Phosphate Absorption by Vitamin D. , 2011, , 349-362.		12
81	Simultaneous genome-wide association studies of anti-cyclic citrullinated peptide in rheumatoid arthritis using penalized orthogonal-components regression. BMC Proceedings, 2009, 3, S20.	1.6	11
82	Effect of phorbol 12â€myristate 13â€acetate activated signaling pathways on 1α, 25 dihydroxyvitamin D ₃ Regulated Human 25â€hydroxyvitamin D ₃ 24â€hydroxylase Gene Expression in Differentiated Cacoâ€2 Cells. Journal of Cellular Biochemistry, 2012, 113, 1599-1607.	2.6	10
83	Phorbol esters enhance 1α,25-dihydroxyvitamin D3-regulated 25-hydroxyvitamin d-24-hydroxylase (CYP24A1) gene expression through ERK-mediated phosphorylation of specific protein 3 (Sp3) in Caco-2 cells. Molecular and Cellular Endocrinology, 2012, 361, 31-39.	3.2	10
84	Canadian recommendations for vitamin D intake for persons affected by multiple sclerosis. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105606.	2.5	9
85	Calcium and vitamin D intake maintained from preovariectomy independently affect calcium metabolism and bone properties in Sprague Dawley rats. Osteoporosis International, 2014, 25, 1905-1915.	3.1	8
86	Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. American Journal of Physiology - Renal Physiology, 2014, 307, G249-G259.	3.4	8
87	Intestinal responses to 1,25 dihydroxyvitamin D are not improved by higher intestinal VDR levels resulting from intestine-specific transgenic expression of VDR in mice. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105670.	2.5	8
88	Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. Journal of Biological Chemistry, 2022, 298, 101616.	3.4	8
89	Molecular regulation of calcium and bone metabolism through the vitamin D receptor. Journal of Musculoskeletal Neuronal Interactions, 2006, 6, 336-7.	0.1	8
90	Genomic analysis of 1,25-dihydroxyvitamin D3 action in mouse intestine reveals compartment and segment-specific gene regulatory effects. Journal of Biological Chemistry, 2022, 298, 102213.	3.4	8

James C Fleet

#	Article	IF	CITATIONS
91	Activation of rapid signaling pathways does not contribute to 1α,25â€dihydroxyvitamin D ₃ â€induced growth inhibition of mouse prostate epithelial progenitor cells. Journal of Cellular Biochemistry, 2009, 107, 1031-1036.	2.6	7
92	Vitamin D status and resistance exercise training independently affect glucose tolerance in older adults. Nutrition Research, 2013, 33, 349-357.	2.9	7
93	Dietary calcium intake and genetics have site-specific effects on peak trabecular bone mass and microarchitecture in male mice. Bone, 2019, 125, 46-53.	2.9	7
94	DASH Without the Dash (of Salt) Can Lower Blood Pressure. Nutrition Reviews, 2009, 59, 291-293.	5.8	6
95	Graphical models via joint quantile regression with component selection. Journal of Multivariate Analysis, 2016, 152, 162-171.	1.0	6
96	Physiology of Vitamin D, Calcium, and Phosphate Absorption. , 2014, , 13-40.		6
97	Short-Term Low-Protein Intake Does Not Increase Serum Parathyroid Hormone Concentration in Humans. Journal of Nutrition, 2004, 134, 1900-1904.	2.9	5
98	Dairy consumption and the prevention of colon cancer: is there more to the story than calcium?1,2. American Journal of Clinical Nutrition, 2006, 83, 527-528.	4.7	5
99	Bone Lead as a Risk Factor for Hypertension in Men. Nutrition Reviews, 2009, 54, 180-182.	5.8	5
100	Discovery of the Hemochromatosis Gene Will Require Rethinking the Regulation of Iron Metabolism. Nutrition Reviews, 2009, 54, 285-287.	5.8	5
101	Vitamin D. Advances in Nutrition, 2011, 2, 365-367.	6.4	5
102	The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of Î ² catenin target genes in mice with colonic inactivation of both APC alleles. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 103-110.	2.5	5
103	An Inducible, Large-Intestine-Specific Transgenic Mouse Model for Colitis and Colitis-Induced Colon Cancer Research. Digestive Diseases and Sciences, 2016, 61, 1069-1079.	2.3	5
104	Maternal vitamin D deficiency induces transcriptomic changes in newborn rat lungs. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105613.	2.5	5
105	Reshaping the way we view vitamin D signalling and the role of vitamin D in health. Nutrition Research Reviews, 2004, 17, 241-248.	4.1	4
106	Effects of hindlimb unloading and bisphosphonates on the serum proteome of rats. Bone, 2007, 41, 646-658.	2.9	4
107	Forward genetics used to identify new gene <i>Mon1a</i> with critical role in controlling macrophage iron metabolism and iron recycling from erythrocytes. Nutrition Reviews, 2009, 67, 607-610.	5.8	4

Regulation of Intestinal Calcium and Phosphate Absorption. , 2018, , 329-342.

4

#	Article	IF	CITATIONS
109	Using genomics to understand intestinal biology. Journal of Physiology and Biochemistry, 2007, 63, 83-96.	3.0	3
110	Modeling human vitamin D status in experimental rodents. FASEB Journal, 2007, 21, A1110.	0.5	3
111	The Toxicity of Parenteral Copper in the Chick: Dependence on Route of Administration. Journal of Nutrition, 1988, 118, 1398-1402.	2.9	2
112	What Have Genomic and Proteomic Approaches Told Us About Vitamin D and Cancer?. Nutrition Reviews, 2007, 65, S127-S130.	5.8	2
113	How Well You Absorb Calcium Is Important for Limiting Hip Fracture Risk. Nutrition Reviews, 2009, 59, 338-341.	5.8	2
114	High dietary vitamin D prevents hypocalcemia and osteomalacia in CYP27B1 knockout mice. FASEB Journal, 2007, 21, A1110.	0.5	2
115	Renal Cell Cancer and Nuclear Receptor Levels—Biomarkers or Functionally Relevant?. Journal of Urology, 2007, 178, 1144-1145.	0.4	1
116	Soy isoflavones increase bone mineral density without altering markers of whole body vitamin D or calcium metabolism in mice. FASEB Journal, 2010, 24, 720.15.	0.5	1
117	Metalloforms of Metallothionein Induced by Parenteral Copper: The Influence of Route of Administration. , 1989, 258, 123-130.		1
118	Are Low-Sodium Diets Appropriate for Treated Hypertensive Men?. Nutrition Reviews, 1995, 53, 296-298.	5.8	0
119	Genomic Approaches to Understanding Vitamin D Action. Nutrition and Disease Prevention, 2004, , 237-256.	0.1	0
120	Protein kinase C signaling modulates 1alpha,25(OH)2D3â€regulated CYP24 gene expression in differentiated Cacoâ€2 cells. FASEB Journal, 2007, 21, A1108.	0.5	0
121	Dietary vitamin D supplementation does not affect Na+ â€dependent phosphate uptake and expression of NaPiâ€Hb cotransporter in the small intestine of vitamin D deficient weanling pigs. FASEB Journal, 2007, 21, A1104.	0.5	0
122	Vitamin Dâ€induced antiâ€cancer effects are blunted in Kiâ€RAS transformed human prostate epithelial cells. FASEB Journal, 2007, 21, A62.	0.5	0
123	Transcriptomic analysis of the program mediating enterocyte differentiation by HNF4, GATA4, or CDX2 in the rat ileal crypt cell line IECâ€6. FASEB Journal, 2008, 22, 1003.19.	0.5	0
124	Vitamin Dâ€induced changes in the gene expression profile of the RWPE1 human prostate epithelial cell (PEC) line relevant to cancer prevention. FASEB Journal, 2008, 22, 294.8.	0.5	0
125	Development and validation of a new LCâ€MS/MS method for simultaneous detection and quantification of Vitamin D related metabolites. FASEB Journal, 2009, 23, 731.1.	0.5	0
126	Vitamin D and Cancer Chemoprevention. , 2010, , 357-385.		0

#	Article	IF	CITATIONS
127	The effect of activatedâ€mitogen activated protein kinase (MAPK) activity on 1,25 dihydroxyvitamin D (1,25D)â€mediated gene transcription in colon cancer cells. FASEB Journal, 2010, 24, 212.6.	0.5	0
128	A Forward Genetics Approach to Identify Genetic Regulators of Liver Mineral Accumulation in Mice. FASEB Journal, 2010, 24, 552.3.	0.5	0
129	Low dietary vitamin D (VD) and high dietary calcium (Ca) increase prostate carcinogenesis in APT121 transgenic mice. FASEB Journal, 2010, 24, 217.3.	0.5	0
130	Disrupting vitamin D (VD) signaling increases androgen dependent proliferation and reduces apoptosis in mouse prostate. FASEB Journal, 2010, 24, 928.12.	0.5	0
131	Varying dietary calcium (Ca), but not vitamin D (VD), influences bone and calcium metabolism in mature mice. FASEB Journal, 2010, 24, 946.1.	0.5	0
132	Activating ERK Signaling enhances 1alpha,25(OH)2D3â€regulated 25â€hydroxyvitamin Dâ€24â€hydroxylase (CYP24) gene expression through the transcription factor Sp3 pathway in Cacoâ€2 cells FASEB Journal, 2010, 24, 212.7.	0.5	0
133	Adaptation of bone and calcium metabolism to low dietary calcium (Ca) stress is affected by genetic background in mice. FASEB Journal, 2010, 24, 552.4.	0.5	0
134	High intestinal vitamin D receptor level increases molecular markers for intestinal calcium absorption but not bone mineral density in mice. FASEB Journal, 2011, 25, .	0.5	0
135	Plasma 25â€hydroxyvitamin D to parathyroid hormone ratio is associated with glucose tolerance and insulin sensitivity in older adults. FASEB Journal, 2011, 25, 223.3.	0.5	0
136	Habitual calcium intake and vitamin D status during adulthood through estrogen deficiency have few interactions on calcium kinetics and bone. FASEB Journal, 2012, 26, 244.3.	0.5	0
137	Identification of genetic loci controlling intestinal calcium (Ca) absorption using BXD recombinant inbred (RI) mice fed high or low dietary Ca. FASEB Journal, 2012, 26, 243.6.	0.5	0
138	High intestinal calcium (Ca) absorption efficiency is positively associated with bone mass in a genetically diverse population of mice. FASEB Journal, 2013, 27, 642.3.	0.5	0
139	Genetic control of serum 1,25 dihydroxyvitamin D (1,25D) level under normal and low dietary calcium (Ca) conditions. FASEB Journal, 2013, 27, 1057.17.	0.5	0
140	Cav1.3 does not contribute to active 1,25Dâ€regulated intestinal Ca absorption. FASEB Journal, 2013, 27, 642.2.	0.5	0
141	High renal calcium (Ca) excretion does not reduce femur bone density in mice fed adequate or low dietary Ca. FASEB Journal, 2013, 27, 867.5.	0.5	0
142	Central adiposity influences the relationship between 25(OH)D and indices of plasma insulin (37.7). FASEB Journal, 2014, 28, 37.7.	0.5	0
143	Viral infections and Vitamin D: Relevance to COVID-19 pandemic. Journal of Steroid Biochemistry and Molecular Biology, 2022, 221, 106119.	2.5	0