
Dmitry A Los

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462828/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 2008, 98, 541-550.	1.6	827
2	Membrane fluidity and its roles in the perception of environmental signals. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 142-157.	1.4	761
3	Structure and expression of fatty acid desaturases. Lipids and Lipid Metabolism, 1998, 1394, 3-15.	2.6	455
4	Membrane Fluidity and Temperature Perception. Plant Physiology, 1997, 115, 875-879.	2.3	395
5	The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9090-9094.	3.3	254
6	Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3098-3103.	3.3	247
7	Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 835-848.	0.5	246
8	The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO Journal, 2000, 19, 1327-1334.	3.5	238
9	Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynthesis Research, 2013, 116, 489-509.	1.6	185
10	Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology, 2012, 59, 141-154.	0.5	155
11	Differences in the control of the temperatureâ€dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Molecular Microbiology, 1997, 25, 1167-1175.	1.2	154
12	Identical Hik-Rre Systems Are Involved in Perception and Transduction of Salt Signals and Hyperosmotic Signals but Regulate the Expression of Individual Genes to Different Extents in Synechocystis. Journal of Biological Chemistry, 2005, 280, 21531-21538.	1.6	144
13	Gene Expression Profiling Reflects Physiological Processes in Salt Acclimation of Synechocystis sp. Strain PCC 6803. Plant Physiology, 2004, 136, 3290-3300.	2.3	131
14	Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Molecular Biology, 1995, 29, 897-907.	2.0	128
15	Gene-engineered Rigidification of Membrane Lipids Enhances the Cold Inducibility of Gene Expression in Synechocystis. Journal of Biological Chemistry, 2003, 278, 12191-12198.	1.6	127
16	Five Histidine Kinases Perceive Osmotic Stress and Regulate Distinct Sets of Genes in Synechocystis. Journal of Biological Chemistry, 2004, 279, 53078-53086.	1.6	120
17	Stress Sensors and Signal Transducers in Cyanobacteria. Sensors, 2010, 10, 2386-2415.	2.1	117
18	Photosynthetic hydrogen production. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11, 101-113.	5.6	108

#	Article	IF	CITATIONS
19	The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Letters, 1993, 318, 57-60.	1.3	104
20	Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1363-1371.	0.5	91
21	Cloning of ?3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Molecular Biology, 1994, 26, 249-263.	2.0	89
22	Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynthesis Research, 2015, 125, 329-340.	1.6	86
23	Redox potentials of primary electron acceptor quinone molecule (Q _A) ^{â^'} and conserved energetics of photosystem II in cyanobacteria with chlorophyll <i>a</i> and chlorophyll <i>d</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8054-8058.	3.3	83
24	Transformation of Tobacco with a Gene for the Thermophilic Acyl-Lipid Desaturase Enhances the Chilling Tolerance of Plants. Plant and Cell Physiology, 2003, 44, 447-450.	1.5	81
25	The Synechocystis model of stress: from molecular chaperones to membranes. Plant Physiology and Biochemistry, 1999, 37, 1-12.	2.8	78
26	A Two-Component Mn2+-Sensing System Negatively Regulates Expression of the mntCAB Operon in Synechocystis. Plant Cell, 2002, 14, 2901-2913.	3.1	76
27	PsbU, a Protein Associated with Photosystem II, Is Required for the Acquisition of Cellular Thermotolerance inSynechococcus species PCC 70021. Plant Physiology, 1999, 120, 301-308.	2.3	74
28	Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1352-1359.	0.5	69
29	The impact of the phytochromes on photosynthetic processes. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 400-408.	0.5	67
30	DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Molecular BioSystems, 2009, 5, 1904.	2.9	65
31	Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology (United Kingdom), 2007, 153, 1149-1156.	0.7	63
32	New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2391-2403.	1.1	62
33	Modes of Fatty Acid Desaturation in Cyanobacteria: An Update. Life, 2015, 5, 554-567.	1.1	60
34	Thermal Protection of the Oxygen-Evolving Machinery by PsbU, an Extrinsic Protein of Photosystem II, in Synechococcus species PCC 7002. Plant Physiology, 1997, 115, 1473-1480.	2.3	57
35	Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanobacteria. Physiologia Plantarum, 2006, 126, 17-27.	2.6	54
36	Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiology (United Kingdom), 2005, 151, 447-455.	0.7	51

#	Article	IF	CITATIONS
37	CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. Photosynthesis Research, 2013, 117, 133-146.	1.6	49
38	Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. Photosynthesis Research, 2017, 133, 215-223.	1.6	48
39	Expression of Acylâ€lipid Δ12â€desaturase Gene in Prokaryotic and Eukaryotic Cells and Its Effect on Cold Stress Tolerance of Potato. Journal of Integrative Plant Biology, 2010, 52, 289-297.	4.1	47
40	Calcium release from Synechocystis cells induced by depolarization of the plasma membrane: MscL as an outward Ca2+ channel. Microbiology (United Kingdom), 2003, 149, 1147-1153.	0.7	43
41	Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochemical Society Transactions, 2000, 28, 628-630.	1.6	41
42	Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. Journal of Photochemistry and Photobiology B: Biology, 2011, 103, 78-86.	1.7	41
43	Eukaryotic-like Ser/Thr Protein Kinases SpkC/F/K Are Involved in Phosphorylation of GroES in the Cyanobacterium Synechocystis. DNA Research, 2011, 18, 137-151.	1.5	41
44	The Unique Protein-to-Protein Carotenoid Transfer Mechanism. Biophysical Journal, 2017, 113, 402-414.	0.2	40
45	Polyphasic characterization of the thermotolerant cyanobacterium <i>Desertifilum</i> sp. strain IPPAS B-1220. FEMS Microbiology Letters, 2017, 364, fnx027.	0.7	40
46	Red and near infra-red signaling: Hypothesis and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 190-203.	5.6	38
47	Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10524-10527.	3.3	36
48	Regulation of Enzymatic Activity and Gene Expression by Membrane Fluidity. Science Signaling, 2000, 2000, pe1-pe1.	1.6	36
49	Isolation and Characterization of a New Cyanobacterial Strain with a Unique Fatty Acid Composition. Advances in Microbiology, 2014, 04, 1033-1043.	0.3	35
50	Characterization of the Fad12 mutant of Synechocystis that is defective in Δ12 acyl-lipid desaturase activity. Lipids and Lipid Metabolism, 1996, 1299, 117-123.	2.6	34
51	Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria. Russian Journal of Plant Physiology, 2004, 51, 353-360.	0.5	34
52	Identification of secreted proteins of the cyanobacteriumSynechocystissp. strain PCC 6803. FEMS Microbiology Letters, 2000, 193, 213-216.	0.7	33
53	Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle. Biophysical Journal, 2017, 112, 46-56.	0.2	32
54	A New Type of Cytochrome c from Synechocystis PCC6803. Journal of Plant Physiology, 1994, 144, 259-264.	1.6	31

#	Article	IF	CITATIONS
55	Serine/Threonine Protein Kinase SpkA in Synechocystis sp. Strain PCC 6803 Is a Regulator of Expression of Three Putative pilA Operons, Formation of Thick Pili, and Cell Motility. Journal of Bacteriology, 2006, 188, 7696-7699.	1.0	31
56	Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium. Russian Journal of Plant Physiology, 2007, 54, 600-606.	0.5	31
57	Responses to cold shock in cyanobacteria. Journal of Molecular Microbiology and Biotechnology, 1999, 1, 221-30.	1.0	31
58	Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34. Life, 2015, 5, 676-699.	1.1	29
59	Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Molecular BioSystems, 2016, 12, 3254-3258.	2.9	28
60	Biochemical characterization of a Δ12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli. Lipids and Lipid Metabolism, 1998, 1390, 323-332.	2.6	27
61	Universal Molecular Triggers of Stress Responses in Cyanobacterium Synechocystis. Life, 2019, 9, 67.	1.1	26
62	Hydrogen Peroxide Participates in Perception and Transduction of Cold Stress Signal in Synechocystis. Plant and Cell Physiology, 2018, 59, 1255-1264.	1.5	25
63	Temperature-induced specific lipid desaturation in the thermophilic cyanobacteriumSynechococcus vulcanus. FEMS Microbiology Letters, 1999, 175, 179-183.	0.7	20
64	Regulation systems for stress responses in cyanobacteria. Russian Journal of Plant Physiology, 2011, 58, 749-767.	0.5	20
65	Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of SpkE protein kinase. Molecular Biology, 2014, 48, 390-398.	0.4	20
66	Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. BioSystems, 2011, 103, 158-163.	0.9	19
67	The effect of low-temperature-induced DNA supercoiling on the expression of the desaturase genes in synechocystis. Cellular and Molecular Biology, 2004, 50, 605-12.	0.3	18
68	Quantitative structure–activity relationship analysis of perfluoroiso-propyldinitrobenzene derivatives known as photosystem II electron transfer inhibitors. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1229-1236.	0.5	17
69	Molecular Mechanisms of Stress Resistance of Photosynthetic Machinery. , 2013, , 21-51.		17
70	Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. Journal of Biotechnology, 2021, 331, 63-73.	1.9	17
71	Sensing and Responses to Low Temperature in Cyanobacteria. Cell and Molecular Response To Stress, 2002, 3, 139-153.	0.4	15
72	Feedback between fluidity of membranes and transcription of the desB gene for the ω3-desaturase in the cyanobacterium Synechocystis. Molecular Biology, 2012, 46, 134-141.	0.4	15

#	Article	IF	CITATIONS
73	Cold-induced gene expression and ω3 fatty acid unsaturation is controlled by red light in Synechocystis. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 84-88.	1.7	15
74	Cyanobacterial leader peptides for protein secretion. FEMS Microbiology Letters, 2003, 218, 351-357.	0.7	14
75	Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 156-167.	1.7	14
76	Waste-free technology of wastewater treatment to obtain microalgal biomass for biodiesel production. International Journal of Hydrogen Energy, 2017, 42, 8586-8591.	3.8	14
77	RNA Isolation from Synechocystis. Bio-protocol, 2015, 5, .	0.2	14
78	Expression of the gene for the delta9 acyl-lipid desaturase in the thermophilic cyanobacterium. Journal of Molecular Microbiology and Biotechnology, 2000, 2, 331-8.	1.0	14
79	The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria. Russian Journal of Plant Physiology, 2006, 53, 153-162.	0.5	13
80	Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids. Advances in Photosynthesis and Respiration, 2009, , 373-388.	1.0	13
81	Heat Stress: Susceptibility, Recovery and Regulation. Advances in Photosynthesis and Respiration, 2012, , 251-274.	1.0	13
82	The complete genome of a cyanobacterium from a soda lake reveals the presence of the components of CO2-concentrating mechanism. Photosynthesis Research, 2016, 130, 151-165.	1.6	13
83	Assessment of the Biotechnological Potential of Cyanobacterial and Microalgal Strains from IPPAS Culture Collection. Applied Biochemistry and Microbiology, 2020, 56, 794-808.	0.3	13
84	Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Molecular Biology, 2007, 41, 427-437.	0.4	12
85	Division of chloroplast nucleoids and replication of chloroplast DNA during the cell cycle ofDunaliella salina grown under blue and red light. Protoplasma, 1989, 150, 160-167.	1.0	11
86	Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis. FEMS Microbiology Letters, 2015, 362, fnv090.	0.7	11
87	Highly active extracellular α-class carbonic anhydrase of Cyanothece sp. ATCC 51142. Biochimie, 2019, 160, 200-209.	1.3	11
88	Putative extracellular α-class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: a sequel to an old story. Microbiology (United Kingdom), 2018, 164, 576-586.	0.7	11
89	The Effect of Tobacco Plant Transformation with a Gene for Acyl-Lipid Δ9-Desaturase from Synechococcus vulcanus on Plant Chilling Tolerance. Russian Journal of Plant Physiology, 2005, 52, 664-667.	0.5	10
90	Aquaporin-deficient mutant of Synechocystis is sensitive to salt and high-light stress. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 377-382.	1.7	10

#	Article	IF	CITATIONS
91	Structure of a cyanobacterial gene encoding the 50S ribosomal protein L9. Plant Molecular Biology, 1993, 21, 913-918.	2.0	9
92	Cyanobacteria respond to cytokinin. Russian Journal of Plant Physiology, 2006, 53, 751-755.	0.5	9
93	Regulatory Role of Membrane Fluidity in Gene Expression. Advances in Photosynthesis and Respiration, 2009, , 329-348.	1.0	9
94	Synechocystis mutants defective in manganese uptake regulatory system, ManSR, are hypersensitive to strong light. Photosynthesis Research, 2016, 130, 11-17.	1.6	9
95	Membrane physical state and stress regulation in Synechocystis: fluidizing alcohols repress fatty acid desaturation. Plant Journal, 2018, 96, 1007-1017.	2.8	9
96	Comparative expression in Escherichia coli of the native and hybrid genes for acyl-lipid Δ9 desaturase. Russian Journal of Genetics, 2007, 43, 121-126.	0.2	8
97	Optimization of Prochlorothrix hollandica cyanobacteria culturing for obtaining myristoleic acid. Russian Journal of Plant Physiology, 2016, 63, 558-565.	0.5	7
98	Draft Genome Sequence of <i>Cyanobacterium</i> sp. Strain IPPAS B-1200 with a Unique Fatty Acid Composition. Genome Announcements, 2016, 4, .	0.8	7
99	Lessons from cyanobacterial transcriptomics: Universal genes and triggers of stress responses. Molecular Biology, 2016, 50, 606-614.	0.4	7
100	Characterization of the murF gene of the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 1995, 141, 163-169.	0.7	6
101	Effect of exogenous glucose on electron flow to photosystem I and respiration in cyanobacterial cells. Russian Journal of Plant Physiology, 2006, 53, 298-304.	0.5	6
102	Draft Genome Sequence of the Thermotolerant Cyanobacterium <i>Desertifilum</i> sp. IPPAS B-1220. Genome Announcements, 2016, 4, .	0.8	6
103	Isolation and Characterization of Toxic Cyanobacteria from Different Natural Sources. Applied Biochemistry and Microbiology, 2017, 53, 754-760.	0.3	6
104	Delta or Omega? Δ12 (ω6) fatty acid desaturases count 3C after the pre-existing double bond. Biochimie, 2020, 179, 46-53.	1.3	6
105	Is the Membrane the Primary Target in the Biological Perception of Temperature? Effect of Membrane Physical State on the Expression of Stress-Defence Genes. , 1995, , 369-371.		5
106	Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochemical Society Transactions, 2000, 28, 628-30.	1.6	5
107	Title is missing!. Russian Journal of Plant Physiology, 2003, 50, 481-486.	0.5	4
108	Possible involvement of cyanobacteria in the formation of plant hormonal system. Russian Journal of Plant Physiology, 2014, 61, 154-159.	0.5	4

1

#	Article	IF	CITATIONS
109	Draft Genome Sequences of a Putative Prokaryotic Consortium (IPPAS B-1204) Consisting of a Cyanobacterium (<i>Leptolyngbya</i> sp.) and an Alphaproteobacterium (<i>Porphyrobacter</i> sp.). Microbiology Resource Announcements, 2019, 8, .	0.3	4
110	Coupling of Cell Division and Differentiation in Arabidopsis thaliana Cultured Cells with Interaction of Ethylene and ABA Signaling Pathways. Life, 2020, 10, 15.	1.1	4
111	Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics. Gene, 2021, 764, 145055.	1.0	4
112	A leader peptide of the extracellular cyanobacterial carbonic anhydrase ensures the efficient secretion of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2022, 344, 11-23.	1.9	4
113	The coxD gene for heme O synthase in Synechocystis. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 84-86.	0.5	3
114	Title is missing!. Russian Journal of Plant Physiology, 2002, 49, 650-656.	0.5	3
115	Functional Characterization of the slr1944 Gene of Cyanobacterium Synechocystis sp. PCC 6803. Russian Journal of Plant Physiology, 2004, 51, 774-784.	0.5	3
116	The involvement of acyl-lipid Δ9-desaturase in the development of chilling tolerance of sensitive plants. Doklady Biological Sciences, 2006, 407, 149-152.	0.2	3
117	Specific features of the system of carbonic anhydrases of alkaliphilic cyanobacteria. Russian Journal of Plant Physiology, 2013, 60, 465-471.	0.5	3
118	Draft Genome Sequences of Two Thermotolerant Cyanobacterial Strains Isolated from Hot Springs. Genome Announcements, 2018, 6, .	0.8	3
119	Overexpression of the acyl-lipid Δ12-desaturase gene protects potato plants from low temperature damage. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2011, 59, 103-115.	0.2	2
120	Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium producing myristoleic acid. Russian Journal of Plant Physiology, 2017, 64, 560-565.	0.5	2
121	Substrate Specificity of Acyl-Lipid Δ9-Desaturase from Cyanobacterium sp. IPPAS B-1200, a Cyanobacterium with Unique Fatty Acid Composition. Russian Journal of Plant Physiology, 2018, 65, 490-497.	0.5	2
122	The Cyanobacterial Desaturases: Aspects of Their Structure and Regulation. , 1995, , 3-8.		2
123	Sensors and Signal Transducers of Environmental Stress in Cyanobacteria. , 2009, , 15-31.		1
124	Construction of prokaryotic strand-specific primary-transcripts saturated RNASeq library by controlled heat magnesium-dependent mRNA degradation. Biochimie, 2020, 177, 63-67.	1.3	1
125	Role of Psbu, an Extrinsic Protein of Photosystem II, In the Acquisition of Thermotolerance in Synechococcus sp. PCC 7002. , 1998, , 2449-2452.		1

126 Transcriptomics of Cyanobacterial Stress Responses: Genes, Sensors, and Molecular Triggers. , 2017, , .

#	Article	IF	CITATIONS
127	Low-Temperature and Substrate Induction of the Gene for Â9 Fatty Acid Desaturase in the Thermophilic Cyanobacterium Synechococcus vulcanus. Russian Journal of Plant Physiology, 2004, 51, 164-168.	0.5	0
128	Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis Journal of Biological Chemistry, 2012, 287, 2269.	1.6	0
129	Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis Journal of Biological Chemistry, 2012, 287, 2269.	1.6	0
130	Cyanobacterial strains, isolated from extreme conditions sources of Kazakhstan – Producers of biodiesel. Journal of Biotechnology, 2014, 185, S120.	1.9	0
131	Gene-Engineered Rigidification of Membrane Lipids Enhances the Cold Inducibility of Gene Expression in Synechocystis. , 2003, , 331-334.		0
132	Creation of mutant collections for the study of genetic control of stress adaptation in Synechocystis sp. Ecological Genetics, 2008, 6, 33-41.	0.1	0
133	Transcription of Some Chloroplast Genes Could be under Phytochrome Control: A Computer Prediction and Analysis of Light-Responsive Sequences. , 1990, , 2499-2502.		0
134	Cloning and Functioning of Chloroplast Promoters in E.coli and Synechocystis. , 1990, , 2551-2554.		0
135	Dunaliella Salina Chloroplast DNA Fragment Maintains Initiation and Termination of DNA Replication in E.Coli. , 1992, , 303-306.		0
136	Glycinebetaine Enhances Tolerance to Salt Stress in Transgenic Cyanobacterium. , 1995, , 3601-3604.		0
137	Genes for Fatty Acid Desaturases and Choline Oxidase are Responsible for Tolerance to Low-Temperature and Salinity Stresses in Cyanobacteria and Plants. , 1996, , 55-63.		0