
Felicia Carotenuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines, 2022, 13, 780.	1.4	15
2	Cardiac Regeneration: the Heart of the Issue. Current Transplantation Reports, 2021, 8, 67-75.	0.9	5
3	Extrinsically Conductive Nanomaterials for Cardiac Tissue Engineering Applications. Micromachines, 2021, 12, 914.	1.4	8
4	Intrinsically Conductive Polymers for Striated Cardiac Muscle Repair. International Journal of Molecular Sciences, 2021, 22, 8550.	1.8	12
5	Turning regenerative technologies into treatment to repair myocardial injuries. Journal of Cellular and Molecular Medicine, 2020, 24, 2704-2716.	1.6	29
6	Information-Driven Design as a Potential Approach for 3D Printing of Skeletal Muscle Biomimetic Scaffolds. Nanomaterials, 2020, 10, 1986.	1.9	3
7	Harnessing Inorganic Nanoparticles to Direct Macrophage Polarization for Skeletal Muscle Regeneration. Nanomaterials, 2020, 10, 1963.	1.9	7
8	3D Printing Decellularized Extracellular Matrix to Design Biomimetic Scaffolds for Skeletal Muscle Tissue Engineering. BioMed Research International, 2020, 2020, 1-13.	0.9	22
9	Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. Nanomaterials, 2020, 10, 1781.	1.9	34
10	Nanoporous Microsponge Particles (NMP) of Polysaccharides as Universal Carriers for Biomolecules Delivery. Nanomaterials, 2020, 10, 1075.	1.9	7
11	Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells. Stem Cells and Development, 2017, 26, 1438-1447.	1.1	26
12	How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study. International Journal of Molecular Sciences, 2016, 17, 752.	1.8	20
13	αïț-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins. European Journal of Translational Myology, 2016, 26, 6033.	0.8	33
14	Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: <i>in Vivo, in Vitro </i> and <i> in Silico </i> Studies. International Journal of Medical Sciences, 2016, 13, 206-219.	1.1	17
15	H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget, 2016, 7, 84338-84358.	0.8	45
16	A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. Cardiovascular Research, 2013, 100, 422-431.	1.8	29
17	Endomorphin-1 prevents lipid accumulation via CD36 down-regulation and modulates cytokines release from human lipid-laden macrophages. Peptides, 2011, 32, 80-85.	1.2	14
18	Thick Soft Tissue Reconstruction on Highly Perfusive Biodegradable Scaffolds. Macromolecular Bioscience, 2010, 10, 127-138.	2.1	27

Felicia Carotenuto

#	Article	IF	CITATIONS
19	An Omega-3 Fatty Acid-Enriched Diet Prevents Skeletal Muscle Lesions in a Hamster Model of Dystrophy. American Journal of Pathology, 2010, 177, 2176-2184.	1.9	25
20	Criticality of the Biological and Physical Stimuli Array Inducing Resident Cardiac Stem Cell Determination. Stem Cells, 2008, 26, 2093-2103.	1.4	98
21	Brain Natriuretic Peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages. Regulatory Peptides, 2008, 148, 26-32.	1.9	49
22	Tuning hierarchical architecture of 3D polymeric scaffolds for cardiac tissue engineering. Journal of Experimental Nanoscience, 2008, 3, 97-110.	1.3	22
23	Intercalated disk remodeling in delta-sarcoglycan-deficient hamsters fed with an alpha-linolenic acid-enriched diet. International Journal of Molecular Medicine, 2008, 21, 41-8.	1.8	3
24	Effects of physical factors on cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S92-S93.	0.9	0
25	ALA-diet prevents myocardial damage in hereditary cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2007, 42, S65-S66.	0.9	0
26	Activatory Properties of Lysophosphatidic Acid on Human THP-1 Cells. Inflammation, 2007, 30, 167-177.	1.7	19
27	α-Linolenic Acid-Enriched Diet Prevents Myocardial Damage and Expands Longevity in Cardiomyopathic Hamsters. American Journal of Pathology, 2006, 169, 1913-1924.	1.9	44
28	α-linolenic acid prevents TNF-α-induced apoptosis in neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 40, 1001.	0.9	0
29	α-linolenic acid-enriched diet restores myocardial contractile function and expands longevity in cardiomyopathic hamster. Journal of Molecular and Cellular Cardiology, 2006, 40, 1001-1002.	0.9	1
30	Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells: Proliferation, Migration, and Differentiation. Stem Cells, 2006, 24, 23-33.	1.4	361
31	Stem cell activation sustains hereditary hypertrophy in hamster cardiomyopathy. Journal of Pathology, 2005, 205, 397-407.	2.1	21
32	Identification of a new missense mutation in the mtDNA of hereditary hypertrophic, but not dilated cardiomyopathic hamsters. Molecular and Cellular Biochemistry, 2003, 252, 73-81.	1.4	14
33	β-Catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovascular Research, 2003, 60, 376-387.	1.8	72
34	Intracellular signaling in cardiomyopathic hamster myocardium. Journal of Molecular and Cellular Cardiology, 2002, 34, A43.	0.9	0
35	Insulin deficiency and reduced expression of lipogenic enzymes in cardiomyopathic hamster. Journal of Lipid Research, 2001, 42, 96-105.	2.0	9