
Yanling Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition. Materials, 2022, 15, 1801.	2.9	1
2	Mechanical properties of pulsed electric current sintered CrFeNiMn equiatomic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143071.	5.6	3
3	Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces. Nanomaterials, 2022, 12, 1037.	4.1	2
4	Hydrogen Effects in Equiatomic CrFeNiMn Alloy Fabricated by Laser Powder Bed Fusion. Metals, 2021, 11, 872.	2.3	7
5	Silica-silicon composites for near-infrared reflection: A comprehensive computational and experimental study. Ceramics International, 2021, 47, 16833-16840.	4.8	4
6	Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applications. ACS Applied Nano Materials, 2021, 4, 5842-5853.	5.0	13
7	Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon, 2021, 185, 27-38.	10.3	16
8	Hierarchical Microstructure of Laser Powder Bed Fusion Produced Face-Centered-Cubic-Structured Equiatomic CrFeNiMn Multicomponent Alloy. Materials, 2020, 13, 4498.	2.9	8
9	Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder. Journal of Alloys and Compounds, 2020, 827, 154142.	5.5	24
10	Cold Gas Spraying of a High-Entropy CrFeNiMn Equiatomic Alloy. Coatings, 2020, 10, 53.	2.6	32
11	Effect of sulfonating agent and ligand chemistry on structural and optical properties of CuSbS ₂ particles prepared by heat-up method. CrystEngComm, 2018, 20, 1527-1535.	2.6	12
12	Platelet CuSbS2 particles with a suitable conduction band position for solar cell applications. Materials Letters, 2018, 215, 157-160.	2.6	21
13	Mechanical Stabilization of Martensite in Cu–Ni–Al Single Crystal and Unconventional Way to Detect It. Shape Memory and Superelasticity, 2018, 4, 77-84.	2.2	3
14	Solution synthesis of CuSbS 2 nanocrystals: A new approach to control shape and size. Journal of Alloys and Compounds, 2018, 736, 190-201.	5.5	17
15	Effect of Ethanol on Ag@Mesoporous Silica Formation by In Situ Modified Stöber Method. Nanomaterials, 2018, 8, 362.	4.1	23
16	Preparation and Photocatalytic Activity of Quaternary GO/TiO2/Ag/AgCl Nanocomposites. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	15
17	Effect of graphene oxide loading in GO/SiO _{2/Ag/AgCl photocatalyst. International Journal of Nanotechnology, 2017, 14, 87.}	0.2	1
18	Highly porous spark plasma sintered Ni-Mn-Ga structures. Scripta Materialia, 2017, 139, 148-151.	5.2	19

#	Article	IF	CITATIONS
19	Nanosilver–Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings. Nanomaterials, 2017, 7, 261.	4.1	45
20	Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action. Materials, 2016, 9, 170.	2.9	24
21	Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target. Applied Physics Letters, 2016, 109, 201905.	3.3	4
22	Crystal structure and photocatalytic properties of titanate nanotubes prepared by chemical processing and subsequent annealing. Journal of Materials Science, 2016, 51, 7322-7335.	3.7	24
23	Properties of the pulsed electric current sintered Ni–Mn–Ga–Co–WC composites. Journal of Alloys and Compounds, 2016, 656, 408-415.	5.5	6
24	Characterization of Gas Atomized Ni-Mn-Ga Powders. Materials Today: Proceedings, 2015, 2, S879-S882.	1.8	13
25	Neutron Diffraction Study of the Martensitic Transformation and Chemical Order in Heusler Alloy Ni1.91Mn1.29Ga0.8. Materials Today: Proceedings, 2015, 2, S853-S857.	1.8	0
26	A Study of Hydrogen Charging of 10M Ni-Mn-Ga Single Crystal. Materials Today: Proceedings, 2015, 2, S859-S862.	1.8	1
27	Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices. Journal of Applied Physics, 2015, 117, .	2.5	2
28	Stress-induced transition from modulated 14M to non-modulated martensite in Ni–Mn–Ga alloy. Acta Materialia, 2015, 90, 151-160.	7.9	37
29	Tuning the Mechanical and Adsorption Properties of Silica with Graphene Oxide. ChemPlusChem, 2014, 79, 1512-1522.	2.8	14
30	Mechanical and Thermal Properties of Pulsed Electric Current Sintered (PECS) Cu-Diamond Compacts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 489-496.	2.1	3
31	Microstructural and mechanical characteristics of Cu–Cu2O composites compacted with pulsed electric current sintering and hot isostatic pressing. Composites Part A: Applied Science and Manufacturing, 2013, 45, 61-69.	7.6	18
32	Nanoscale surface properties of a Ni–Mn–Ga 10M magnetic shape memory alloy. Journal of Alloys and Compounds, 2013, 577, S367-S371.	5.5	14
33	In situ TEM study of deformation twinning in Ni–Mn–Ga non-modulated martensite. Acta Materialia, 2013, 61, 5290-5299.	7.9	50
34	Twinning in shear and uniaxial loading in five layered martensite Ni-Mn-Ga single crystals. European Physical Journal B, 2013, 86, 1.	1.5	2
35	DISLOCATION MECHANISM OF TWINNING IN Ni–Mn–Ga . Functional Materials Letters, 2012, 05, 1250006.	1.2	19
36	Processing and properties of Ni–Mn–Ga magnetic shape memory alloy based hybrid materials. Current Applied Physics, 2012, 12, S63-S67.	2.4	13

#	Article	IF	CITATIONS
37	Pulsed laser deposition using diffractively shaped excimer-laser beams. Applied Physics A: Materials Science and Processing, 2012, 108, 423-430.	2.3	3
38	Effect of Annealing on Ag-Doped Submicron Silica Powder Prepared with Modified Stöber Method. Materials Science Forum, 2011, 695, 449-452.	0.3	6
39	Twin boundary nucleation and motion in Ni–Mn–Ga magnetic shape memory material with a low twinning stress. Scripta Materialia, 2010, 62, 9-12.	5.2	54
40	Crack growth of 10M Ni–Mn–Ga material in cyclic mechanical loading. Physics Procedia, 2010, 10, 87-93.	1.2	9
41	Probing structure and microstructure of epitaxial Ni–Mn–Ga films by reciprocal space mapping and pole figure measurements. Acta Materialia, 2010, 58, 6665-6671.	7.9	13
42	High-cycle fatigue of 10M Ni–Mn–Ga magnetic shape memory alloy in reversed mechanical loading. Smart Materials and Structures, 2010, 19, 075014.	3.5	42
43	Recent Development of the Magnetic Shape Memory Materials Research in Finland. Materials Research Society Symposia Proceedings, 2009, 1200, 26.	0.1	0
44	DMA testing of Ni–Mn–Ga/polymer composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 125-129.	7.6	55
45	In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process. Journal of Non-Crystalline Solids, 2009, 355, 2224-2227.	3.1	11
46	Process study on the formation of nanocrystalline α-alumina with novel morphology at 1000 °C. Journal of Materials Chemistry, 2009, 19, 1915.	6.7	14
47	Determining the liquidus and ordering temperatures of the ternary NiMn-Ga and quaternary Ni-Mn-Ga-Fe/Cu alloys. , 2009, , .		5
48	<i>In-situ</i> TEM straining of tetragonal martensite of Ni-Mn-Ga alloy. , 2009, , .		3
49	Comparison of different methods for studying magnetic domains in Ni–Mn–Ga martensites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 302-305.	5.6	8
50	Ni–Mn–Ga multifunctional compounds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 80-85.	5.6	63
51	Control of particle size by pressure adjustment in cobalt nanoparticle synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330, 14-20.	4.7	15
52	Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 314-317.	5.6	38
53	Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scripta Materialia, 2008, 59, 550-553.	5.2	31
54	Nanocrystalline α-alumina with novel morphology at 1000 °C. Journal of Materials Chemistry, 2008, 18, 2423.	6.7	21

#	Article	IF	CITATIONS
55	Recent Developments of Magnetic SMA. Advances in Science and Technology, 2008, 59, 1-10.	0.2	8
56	Morphology of ferromagnetic sol–gel submicron silica powders doped with iron and nickel particles. Materials Letters, 2007, 61, 3171-3173.	2.6	7
57	chapter 1 Giant Magnetostrictive Materials. Handbook of Magnetic Materials, 2006, 16, 1-39.	0.6	49
58	Time-dependent magnetostrain and thermal phonons in the Ni-Mn-Ga magnetic shape-memory alloys. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 75-79.	0.6	6
59	Crystal structure and macrotwin interface of five-layered martensite in Ni–Mn–Ga magnetic shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 961-964.	5.6	34
60	Effect of intermartensitic reaction on the co-occurrence of the magnetic and structural transition in Ni–Mn–Ca alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 957-960.	5.6	9
61	Magnetic domain evolution with applied field in a Ni–Mn–Ga magnetic shape memory alloy. Scripta Materialia, 2006, 54, 2155-2160.	5.2	49
62	Development of Nano-reinforced HVOF Sprayed Ceramic Coatings. Advanced Engineering Materials, 2006, 8, 669-673.	3.5	5
63	Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Applied Physics Letters, 2006, 89, 082502.	3.3	31
64	Vibration cavitation behaviour of selected Ni–Mn–Ga alloys. Wear, 2005, 258, 1364-1371.	3.1	8
65	Investigation of magnetic domains in Ni–Mn–Ga alloys with a scanning electron microscope. Smart Materials and Structures, 2005, 14, S211-S215.	3.5	14
66	Recent breakthrough development of the magnetic shape memory effect in Ni–Mn–Ga alloys. Smart Materials and Structures, 2005, 14, S223-S235.	3.5	124
67	Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. Journal of Applied Physics, 2004, 96, 2159-2163.	2.5	81
68	Effect of the chemical composition to martensitic transformation in Ni–Mn–Ga–Fe alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 384-388.	5.6	63
69	Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. Journal of Applied Physics, 2004, 95, 8074-8078.	2.5	295
70	Crystal structure and twinning in martensite of Ni1.96Mn1.18Ga0.86 magnetic shape memory alloy. Scripta Materialia, 2003, 48, 1427-1432.	5.2	46
71	On the corrosion of non-stoichiometric martensitic Ni-Mn-Ga alloys. European Physical Journal Special Topics, 2003, 112, 935-938.	0.2	13
72	Time-dependent dynamic response of martensite in Ni-Mn-Ga magnetic shape memory alloys to stress caused by constant magnetic field. European Physical Journal Special Topics, 2003, 112, 1009-1012.	0.2	5

#	Article	IF	CITATIONS
73	Crystal structure of three Ni-Mn-Ga alloys in powder and bulk materials. European Physical Journal Special Topics, 2003, 112, 921-924.	0.2	42
74	Structure and Magnetic Properties of a Shape-Memory NiMnGa Alloy. Materials Science Forum, 2002, 394-395, 541-544.	0.3	9
75	Corrosion Behavior of NiMnGa Shape-Memory Alloy. Materials Science Forum, 2002, 394-395, 565-568.	0.3	12
76	Time-Dependent Evolution of Martensitic Structure Caused by Magnetic Field in Ni ₂ MnGa Magnetic Shape Memory Alloy. Materials Science Forum, 2001, 373-376, 357-360.	0.3	3
77	The effect of time on the evolution of the martensite structure and strain caused by magnetic field in Ni2MnGa shape memory alloys. European Physical Journal Special Topics, 2001, 11, Pr8-281-Pr8-286.	0.2	1
78	X-Ray Diffraction Reciprocal Space Mapping Study of Modulated Crystal Structures in 10M Ni-Mn-Ga Martensitic Phase. Materials Science Forum, 0, 635, 63-68.	0.3	3
79	Long-Term Cyclic Loading of 10M Ni-Mn-Ga Alloys. Materials Science Forum, 0, 684, 203-214.	0.3	5
80	The Absence of Work Hardening in Steel Quenched and Tempered at Around 623K. , 0, , 187-190.		0