Susanne Dörfler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Importance of Swelling Effects on Cathode Density and Electrochemical Performance of Lithiumâ^'Sulfur Battery Cathodes Produced via Dry Processing. Energy Technology, 2022, 10, 2100721.	3.8	7
2	Influence of external stack pressure on the performance of Li-S pouch cell. JPhys Energy, 2022, 4, 014004.	5.3	5
3	Operando Radiography and Multimodal Analysis of Lithium–Sulfur Pouch Cells—Electrolyte Dependent Morphology Evolution at the Cathode. Advanced Energy Materials, 2022, 12, .	19.5	13
4	Largeâ€Scale Synthesis of Nanostructured Carbonâ€Ti ₄ O ₇ Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2022, 5, .	4.7	8
5	Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. Batteries and Supercaps, 2021, 4, 347-358.	4.7	10
6	Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technology, 2021, 9, 2000694.	3.8	58
7	Impact of Carbon Porosity on Sulfur Conversion in Liâ^'S Battery Cathodes in a Sparingly Polysulfide Solvating Electrolyte. Batteries and Supercaps, 2021, 4, 823-833.	4.7	22
8	Sulfur Transfer Melt Infiltration for Highâ€Power Carbon Nanotube Sheets in Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2021, 4, 989-1002.	4.7	14
9	Nanostructured Siâ^'C Composites As Highâ€Capacity Anode Material For Allâ€Solidâ€State Lithiumâ€lon Batteries**. Batteries and Supercaps, 2021, 4, 1323-1334.	4.7	19
10	The Role of Carbon Electrodes Pore Size Distribution on the Formation of the Cathode–Electrolyte Interphase in Lithium–Sulfur Batteries. Batteries and Supercaps, 2021, 4, 612-622.	4.7	18
11	Influence of Polysulfides on the Lithium Metal Anode and on Electrolyte Properties. ECS Meeting Abstracts, 2021, MA2021-02, 88-88.	0.0	0
12	Scalable production of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon, 2020, 161, 190-197.	10.3	43
13	Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Science Advances, 2020, 6, eaay2757.	10.3	152
14	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	7.8	109
15	Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule, 2020, 4, 539-554.	24.0	288
16	The Role of Balancing Nanostructured Silicon Anodes and NMC Cathodes in Lithium-Ion Full-Cells with High Volumetric Energy Density. Journal of the Electrochemical Society, 2020, 167, 020516.	2.9	46
17	Mechanistic Insights into the Role of Covalent Triazine Frameworks as Cathodes in Lithium‣ulfur Batteries. Batteries and Supercaps, 2020, 3, 1069-1079.	4.7	14
18	Polysulfide Shuttle Suppression by Electrolytes with Lowâ€Density for Highâ€Energy Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900625.	3.8	57

SUSANNE DöRFLER

#	Article	IF	CITATIONS
19	Importance of Capacity Balancing on The Electrochemical Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ (NCM811)/Silicon Full Cells. Journal of the Electrochemical Society, 2019, 166, A3265-A3271.	2.9	40
20	Nitrogenâ€Doped Biomassâ€Derived Carbon Formed by Mechanochemical Synthesis for Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 310-319.	6.8	81
21	Symmetric Lithium Sulfide – Sulfur Cells: A Method to Study Degradation Mechanisms of Cathode, Separator and Electrolyte Concepts for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A1084-A1091.	2.9	16
22	On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion. Nano Energy, 2018, 54, 116-128.	16.0	67
23	Sulfur: an intermediate template for advanced silicon anode architectures. Journal of Materials Chemistry A, 2018, 6, 14787-14796.	10.3	21
24	High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability. Scientific Reports, 2016, 6, 27982.	3.3	69
25	Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. Journal of Power Sources, 2014, 268, 82-87.	7.8	139
26	High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum. Journal of Power Sources, 2013, 227, 218-228.	7.8	66
27	High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chemical Communications, 2012, 48, 4097.	4.1	282
28	Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates. Chemical Physics Letters, 2011, 511, 288-293.	2.6	37