
Andrew S Rosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter, 2021, 4, 1578-1597.	10.0	170
2	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	3.0	123
3	Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation. ACS Catalysis, 2019, 9, 3576-3587.	11.2	105
4	Identifying promising metal–organic frameworks for heterogeneous catalysis via highâ€ŧhroughput periodic density functional theory. Journal of Computational Chemistry, 2019, 40, 1305-1318.	3.3	87
5	A detailed combined experimental and theoretical study on dimethyl ether/propane blended oxidation. Combustion and Flame, 2016, 168, 310-330.	5.2	85
6	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	13.7	79
7	Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O ₂ Binding: Design Rules and Ambient Temperature O ₂ Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society, 2020, 142, 4317-4328.	13.7	67
8	Correlations, trends and potential biases among publicly accessible web-based student evaluations of teaching: a large-scale study of RateMyProfessors.com data. Assessment and Evaluation in Higher Education, 2018, 43, 31-44.	5.6	57
9	High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials, 2022, 8, .	8.7	43
10	Realizing the data-driven, computational discovery of metal-organic framework catalysts. Current Opinion in Chemical Engineering, 2022, 35, 100760.	7.8	28
11	Zr ₆ O ₈ Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catalysis, 2020, 10, 14959-14970.	11.2	24
12	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
13	Comprehensive Phase Diagrams of MoS ₂ Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations. Journal of Physical Chemistry C, 2018, 122, 15318-15329.	3.1	18
14	Comparing GCA, GGA+ <i>U</i> , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. Journal of Chemical Physics, 2020, 152, 224101.	3.0	16
15	Highâ€Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Twoâ€State Reactivity for Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 19494-19502.	13.8	14
16	Evidence for Copper Dimers in Low-Loaded CuO _{<i>x</i>} /SiO ₂ Catalysts for Cyclohexane Oxidative Dehydrogenation. ACS Catalysis, 2018, 8, 9775-9789.	11.2	11
17	Highâ€Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‧tate Reactivity for Câ^'H Bond Activation. Angewandte Chemie, 2020, 132, 19662-19670.	2.0	9
18	Topological effects on separation of alkane isomers in metalâ^'organic frameworks. Fluid Phase Equilibria, 2020, 519, 112642.	2.5	8

#	Article	IF	CITATIONS
19	Validation of x-ray line ratios for electron temperature determination in tokamak plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 105701.	1.5	6
20	Exploring mechanistic routes for light alkane oxidation with an iron–triazolate metal–organic framework. Physical Chemistry Chemical Physics, 2022, 24, 8129-8141.	2.8	6