Abhishek Gaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462262/publications.pdf

Version: 2024-02-01

25 426 12 20 papers citations h-index g-index

25 25 25 381 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. Journal of Environmental Management, 2018, 206, 145-157.	3.8	65
2	Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities. Data, 2019, 4, 72.	1.2	47
3	Durability and Climate Change—Implications for Service Life Prediction and the Maintainability of Buildings. Buildings, 2020, 10, 53.	1.4	41
4	Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. Buildings, 2022, 12, 925.	1.4	34
5	Future Changes in Flood Hazards across Canada under a Changing Climate. Water (Switzerland), 2018, 10, 1441.	1.2	30
6	Web-Based Tool for the Development of Intensity Duration Frequency Curves under Changing Climate at Gauged and Ungauged Locations. Water (Switzerland), 2020, 12, 1243.	1.2	25
7	Towards Reducing Climate Change Impact Assessment Process Uncertainty. Environmental Processes, 2015, 2, 275-290.	1.7	24
8	Exploring the effects that a non-stationary climate and dynamic electricity grid mix has on whole building life cycle assessment: A multi-city comparison. Sustainable Cities and Society, 2020, 61, 102294.	5.1	20
9	Added value of convection permitting climate modelling in urban overheating assessments. Building and Environment, 2022, 207, 108415.	3.0	20
10	Effects of using different urban parametrization schemes and land-cover datasets on the accuracy of WRF model over the City of Ottawa. Urban Climate, 2021, 35, 100737.	2.4	15
11	Evaluating approaches of selecting extreme hot years for assessing building overheating conditions during heatwaves. Energy and Buildings, 2022, 254, 111610.	3.1	15
12	Flooding Related Consequences of Climate Change on Canadian Cities and Flow Regulation Infrastructure. Water (Switzerland), 2019, 11, 63.	1.2	14
13	Potential future changes in wildfire weather and behavior around 11 Canadian cities. Urban Climate, 2021, 35, 100735.	2.4	13
14	Assessment of future overheating conditions in Canadian cities using a reference year selection method. Building and Environment, 2022, 218, 109102.	3.0	12
15	Application of physical scaling towards downscaling climate model precipitation data. Theoretical and Applied Climatology, 2018, 132, 287-300.	1.3	11
16	Gridded Extreme Precipitation Intensity–Duration–Frequency Estimates for the Canadian Landmass. Journal of Hydrologic Engineering - ASCE, 2020, 25, 05020006.	0.8	7
17	Future projected changes in moisture index over Canada. Building and Environment, 2021, 199, 107923.	3.0	6
18	Effects of Global Warming on Precipitation Extremes: Dependence on Storm Characteristics. Water Resources Management, 2018, 32, 2639-2648.	1.9	5

#	Article	IF	Citations
19	Introduction to Physical Scaling. , 2019, , 199-273.		5
20	Climate Data to Support the Adaptation of Buildings to Climate Change in Canada. Data, 2022, 7, 42.	1.2	5
21	Extension of physical scaling method and its application towards downscaling climate model based near surface air temperature. International Journal of Climatology, 2017, 37, 3353-3366.	1.5	4
22	Comparison of the Theoretical Clausius–Clapeyron Scaling and <i>IDF_CC</i> Tool for Updating Intensity-Duration-Frequency Curves under Changing Climatic Conditions in Canada. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	3
23	Development of moisture reference years for assessing long-term mould growth risk of wood-frame building envelopes. Journal of Physics: Conference Series, 2021, 2069, 012015.	0.3	3
24	Projected Changes in the Dynamics of Flood Hazard in the Grand River Basin, Canada. British Journal of Environment and Climate Change, 2015, 5, 37-51.	0.3	2
25	Towards Formulating a National Guideline on the Design of Building Enclosures Subjected to Climate Change in Canada., 2020,, 97-113.		0