Manish Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2462220/publications.pdf

Version: 2024-02-01

411340 511568 45 993 20 30 citations h-index g-index papers 45 45 45 1414 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Relaxation of residual stress-controlled thermopower factor in transparent-flexible Ti-doped ZnO thin films. Ceramics International, 2022, 48, 2605-2613.	2.3	11
2	Thermoelectric Properties of Ag-Doped Sb2Te3 Thin Films on SiO2 and Polyimide Substrates with Rapid Thermal Annealing. Journal of Electronic Materials, 2021, 50, 2669-2673.	1.0	4
3	Synergistic enhancement of antibacterial activity of Cu:C nanocomposites through plasma induced microstructural engineering. Applied Surface Science, 2020, 500, 143996.	3.1	6
4	Experimental and theoretical study of thermoelectric properties of rhombohedral GeSb5Te10 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 250, 114439.	1.7	6
5	Effect of Ag mixing in thermoelectric Ge2Sb2Te5 thin films. Materials Letters, 2019, 234, 229-232.	1.3	10
6	Photocatalytic antibacterial study of N-doped TiO2 thin films synthesized by ICP assisted plasma sputtering method. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106, 187-193.	1.3	20
7	Microstructural control by substrate heating in Pulse-DC sputtering induced thermoelectric Ge2Sb2Te5 thin films. Journal of Alloys and Compounds, 2018, 763, 430-435.	2.8	12
8	Thermoelectric Power Factor Enhancement by Pulsed Plasma Engineering in Magnetron Sputtering Induced Ge ₂ Sb ₂ Te ₅ Thin Films. ACS Applied Energy Materials, 2018, 1, 4025-4031.	2.5	14
9	Surface Energy in Nanocrystalline Carbon Thin Films: Effect of Size Dependence and Atmospheric Exposure. Langmuir, 2017, 33, 2514-2522.	1.6	11
10	Plasma diagnostic of cup-like magnetron source for transparent conductive oxide thin films. Vacuum, 2017, 146, 517-523.	1.6	4
11	Low-bandgap, highlyc-axis-oriented Al-doped ZnO thin films. Journal Physics D: Applied Physics, 2017, 50, 185206.	1.3	8
12	Size-controlled growth and antibacterial mechanism for Cu:C nanocomposite thin films. Physical Chemistry Chemical Physics, 2017, 19, 237-244.	1.3	39
13	Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering. Applied Surface Science, 2017, 392, 1062-1067.	3.1	11
14	Topography evolution of 500 keV Ar ⁴⁺ ion beam irradiated InP(100) surfaces – formation of self-organized In-rich nano-dots and scaling laws. Physical Chemistry Chemical Physics, 2016, 18, 20363-20370.	1.3	10
15	Enhancement in Thermoelectric Properties of Cubic Ge ₂ Sb ₂ Te ₅ Thin Films by Introducing Structural Disorder. Energy Technology, 2016, 4, 375-379.	1.8	22
16	Effect of Grazing Angle Cross-Ion Irradiation on Ag Thin Films. Nanoscale Research Letters, 2016, 11, 454.	3.1	14
17	Pulsed DC-plasma sputtering induced synthesis of hydrogenated carbon thin films for L-929 cell cultivation. Surface and Coatings Technology, 2016, 307, 1119-1123.	2.2	5
18	Low temperature plasma processing for cell growth inspired carbon thin films fabrication. Archives of Biochemistry and Biophysics, 2016, 605, 41-48.	1.4	22

#	Article	IF	Citations
19	La/Sm/Er Cation Doping Induced Thermal Properties of SrTiO ₃ Perovskite. Inorganic Chemistry, 2016, 55, 8822-8826.	1.9	13
20	Study of Plasma Properties for the Lowâ€Temperature Deposition of Highly Conductive Aluminum Doped ZnO Film Using ICP Assisted DC Magnetron Sputtering. Plasma Processes and Polymers, 2016, 13, 134-146.	1.6	33
21	Role of surface-electrical properties on the cell-viability of carbon thin films grown in nanodomain morphology. Journal Physics D: Applied Physics, 2016, 49, 264001.	1.3	10
22	Surface energy and wettability control in bio-inspired PEG like thin films. Materials and Design, 2016, 92, 405-413.	3.3	16
23	Study of pulsed-DC sputtering induced Ge 2 Sb 2 Te 5 thin films using facile thermoelectric measurement. Materials and Design, 2016, 98, 254-261.	3.3	20
24	Molecular simulation for thermoelectric properties of c-axis oriented hexagonal GeSbTe model clusters. Materials and Design, 2016, 89, 957-963.	3.3	16
25	Stability-Inspired Entrapment of Ag Nanoparticles in ZrO2 Thin films. Plasmonics, 2016, 11, 261-267.	1.8	28
26	Nanoscale surface conductivity analysis of plasma sputtered carbon thin films. RSC Advances, 2015, 5, 96360-96365.	1.7	5
27	Tailoring of microstructure in hydrogenated nanocrystalline Si thin films by ICP-assisted RF magnetron sputtering. Journal Physics D: Applied Physics, 2015, 48, 475303.	1.3	18
28	Advantage of dual-confined plasmas over conventional and facing-target plasmas for improving transparent-conductive properties in Al doped ZnO thin films. Surface and Coatings Technology, 2015, 284, 85-89.	2.2	40
29	Study of thermal annealing induced plasmonic bleaching in Ag:TiO2 nanocomposite thin films. Scripta Materialia, 2015, 105, 46-49.	2.6	31
30	Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films. Applied Physics Letters, 2015, 106, .	1.5	43
31	Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces. Applied Surface Science, 2015, 357, 184-188.	3.1	11
32	Synthesis of Polythiophene and its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 2014, 938, 151-157.	0.3	36
33	Plasmonic and Nonlinear Optical Absorption Properties of Ag:ZrO2 Nanocomposite Thin Films. Plasmonics, 2014, 9, 129-136.	1.8	72
34	Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochimica Acta, 2014, 149, 152-158.	2.6	134
35	Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation. Current Applied Physics, 2014, 14, 312-317.	1.1	32
36	Fabrication of Ag:TiO2Nanocomposite Thin Films by Sol-Gel Followed by Electron Beam Physical Vapour Deposition Technique. Journal of Spectroscopy, 2013, 2013, 1-6.	0.6	9

#	Article	IF	CITATIONS
37	Low Energy Bombardment Induced Formation Of Ge Nanoparticles. Advanced Materials Letters, 2013, 4, 402-407.	0.3	12
38	Role of surface composition in morphological evolution of GaAs nano-dots with low-energy ion irradiation. Nanoscale Research Letters, 2012, 7, 552.	3.1	26
39	Evolution and tailoring of plasmonic properties in Ag:ZrO2 nanocomposite films by swift heavy ion irradiation. Journal of Applied Physics, 2011, 109, 044311-044311-6.	1.1	26
40	Engineering of hydrophilic and plasmonic properties of Ag thin film by atom beam irradiation. Applied Surface Science, 2011, 258, 1464-1469.	3.1	32
41	Effect of sol-age on the surface and optical properties of sol-gel derived mesoporous zirconia thin films. AIP Advances, $2011,1,\ldots$	0.6	24
42	Effect of atmospheric exposure on the growth of citrate-capped silver nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1940-1943.	1.3	20
43	Tailoring surface plasmon resonance in Ag:ZrO2 nanocomposite thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 470-474.	1.3	22
44	Ag:ZrO ₂ nanocomposite thin films derived using a novel sol–gel technique. Physica Status Solidi (B): Basic Research, 2009, 246, 2232-2237.	0.7	24
45	A Modified Chemical Route for Synthesis of Zirconia Thin Films Having Tunable Porosity. Materials Research Society Symposia Proceedings, 2008, 1074, 1.	0.1	11