
Daniel Trauth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461254/publications.pdf Version: 2024-02-01

DANIEL TRALITH

#	Article	IF	CITATIONS
1	Relating wear stages in sheet metal forming based on short- and long-term force signal variations. Journal of Intelligent Manufacturing, 2022, 33, 2143-2155.	7.3	8
2	Self‣ubricating Physical Vapor Deposition Coatings for Dry Cold Massive Forming. Steel Research International, 2020, 91, 1900475.	1.8	3
3	Contact pressure, slip-rate, and temperature dependent friction analysis regarding damage free deep drawing of stainless steel. Production Engineering, 2020, 14, 231-238.	2.3	1
4	Stamping Process Modelling in an Internet of Production. Procedia Manufacturing, 2020, 49, 61-68.	1.9	14
5	Al-based Framework for Deep Learning Applications in Grinding. , 2020, , .		6
6	Development of a hybrid DLT cloud architecture for the automated use of finite element simulation as a service for fine blanking. International Journal of Advanced Manufacturing Technology, 2020, 108, 3717-3724.	3.0	3
7	Private Multi-Hop Accountability for Supply Chains. , 2020, , .		14
8	Punch-to-Punch Variations in Stamping Processes. , 2020, , .		16
9	FactDAG: Formalizing Data Interoperability in an Internet of Production. IEEE Internet of Things Journal, 2020, 7, 3243-3253.	8.7	40
10	In-situ material classification in sheet-metal blanking using deep convolutional neural networks. Production Engineering, 2019, 13, 743-749.	2.3	12
11	Towards an Infrastructure Enabling the Internet of Production. , 2019, , .		90
12	Highly iterative technology planning: processing of information uncertainties in the planning of manufacturing technologies. Production Engineering, 2019, 13, 361-371.	2.3	9
13	Investigation of Friction and Adhesion Behavior of Textured Workpieces and Coated Tools Under Dry Tribological Contact. Minerals, Metals and Materials Series, 2019, , 1615-1628.	0.4	1
14	Investigation of different tribological systems during full forward impact extrusion of aluminum alloy EN AW 6082. Industrial Lubrication and Tribology, 2019, 72, 709-712.	1.3	0
15	Analysis of spindle bearing load with regard to the false brinelling effect caused by machine hammer peening. International Journal of Advanced Manufacturing Technology, 2018, 95, 3969-3976.	3.0	3
16	Analysis of the dynamic chip formation process in turning. International Journal of Mechanical Sciences, 2018, 135, 313-324.	6.7	15
17	Material removal mechanisms in grinding of two-phase brittle materials. International Journal of Advanced Manufacturing Technology, 2018, 95, 287-298.	3.0	4
18	Influence of Impact Force, Impact Angle, and Stroke Length in Machine Hammer Peening on the Surface Integrity of the Stainless Steel X3CrNiMo13-4. Procedia CIRP, 2018, 71, 166-171.	1.9	14

DANIEL TRAUTH

#	Article	IF	CITATIONS
19	A predictive model for die roll height in fine blanking using machine learning methods. Procedia Manufacturing, 2018, 15, 570-577.	1.9	12
20	A characterization of quality of sheared edge in fine blanking using edge-computing approach. Procedia Manufacturing, 2018, 15, 578-583.	1.9	4
21	Numerical Prediction of the Microstructure and Stress Evolution During Surface Grinding of AISI 52100 (DIN 100Cr6). Integrating Materials and Manufacturing Innovation, 2018, 7, 202-213.	2.6	5
22	Influence of surface integrity on the plastic flow in analogous testing of 42CrMo4. MATEC Web of Conferences, 2018, 190, 14009.	0.2	1
23	Analysis of the grinding wheel wear in dependency of the cemented carbide specification. International Journal of Advanced Manufacturing Technology, 2018, 99, 747-754.	3.0	14
24	Tribological studies on self-lubricating (Cr,Al)N+Mo:S coatings at elevated temperature. Surface and Coatings Technology, 2018, 353, 282-291.	4.8	12
25	Dependencies of the die-roll height during fine blanking of case hardening steel 16MnCr5 without V-ring using a nesting strategy. International Journal of Advanced Manufacturing Technology, 2018, 95, 3083-3091.	3.0	14
26	Evaluation of the shear stresses on surface structured workpieces in dry forming using a novel pin-on-cylinder tribometer with axial feed. International Journal of Material Forming, 2017, 10, 557-565.	2.0	3
27	Electro-thermo-mechanical contact model for bulk metal forming under application of electrical resistance heating. International Journal of Advanced Manufacturing Technology, 2017, 89, 3601-3618.	3.0	6
28	Numerical shape optimization of cold forging tools by means of FEM/BEM simulation. International Journal of Material Forming, 2017, 10, 811-821.	2.0	3
29	Influence of the cemented carbide specification on the process force and the process temperature in grinding. Production Engineering, 2017, 11, 633-641.	2.3	2
30	Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks. Journal of Physics: Conference Series, 2017, 896, 012096.	0.4	6
31	Forward impact extrusion of surface textured steel blanks using coated tooling. AIP Conference Proceedings, 2017, , .	0.4	2
32	Analysis of the fluid pressure, load capacity, and coefficient of friction of an elliptic machine hammer peened surface structure in hydrodynamic lubrication. Production Engineering, 2016, 10, 539-550.	2.3	5
33	Synthesis, characterization, and tribological evaluation of HPPMS (Cr1â^'xAlx)N + MoSy coatings. Surface and Coatings Technology, 2016, 308, 383-393.	4.8	18
34	Influence of the Composition on the Properties of (Cr _{1–x} Al _x N/Mo _y S _z PVD Coatings. Advanced Engineering Materials, 2016, 18, 1036-1043.	3.5	1
35	Computational Fluid Dynamics Analysis of a Machine Hammer Peened Surface Structure for Lubricated Sliding Contacts. Journal of Tribology, 2016, 138, .	1.9	2
36	Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer peening. International Journal of Material Forming, 2016, 9, 635-651.	2.0	18

DANIEL TRAUTH

#	Article	IF	CITATIONS
37	Extension of the normalized Cockcroft and Latham criterion with temperature-dependent critical damage values for predicting chevron cracks in solid forward extrusion. International Journal of Material Forming, 2016, 9, 449-456.	2.0	12
38	FE-analysis and in situ visualization of pressure-, slip-rate-, and temperature-dependent coefficients of friction for advanced sheet metal forming: development of a novel coupled user subroutine for shell and continuum discretization. International Journal of Advanced Manufacturing Technology, 2015, 81, 397-410.	3.0	23
39	Physicochemical Analysis of Machine Hammer Peened Surface Structures for Deep Drawing: Determination of the Work of Adhesion and Spreading Pressure of Lubrication to Surface Structure. Journal of Tribology, 2015, 137, .	1.9	7
40	Analysis of the Velocity Distribution of an Elliptic Surface Structure Manufactured by Machine Hammer Peening. Tribology Letters, 2015, 60, 1.	2.6	2
41	Wear Analysis of Tool Surfaces Structured by Machine Hammer Peening for Foil-Free Forming of Stainless Steel. Advanced Materials Research, 2014, 1018, 317-324.	0.3	8
42	Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap. Production Engineering, 2014, 8, 263-272.	2.3	22
43	Friction analysis of alternative tribosystems for a foil free forming of stainless steel using strip drawing test: analysis of physicochemical interactions between coatings and lubricants. Production Engineering, 2014, 8, 593-602.	2.3	4
44	Time-efficient Prediction of the Surface Layer State after Deep Rolling using Similarity Mechanics Approach. Procedia CIRP, 2013, 9, 29-34.	1.9	31
45	2D-CFD Analysis of the Fluid Pressure and Velocity Distribution of Experimentally Machine Hammer Peened Surface Structures in Hydrodynamic Applications. Applied Mechanics and Materials, 0, 794, 174-181.	0.2	0
46	PVD Coated Tools and Surface-Structured Workpieces in Dry Cold Forming of Steel. Defect and Diffusion Forum, 0, 404, 19-27.	0.4	1