
Arne Wittstock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoporous Gold Catalyst for the Oxidative Nâ€Đealkylation of Drug Molecules: A Method for Synthesis of Nâ€Đealkylated Metabolites. ChemMedChem, 2022, , .	3.2	3
2	Comparison of the photocatalytic activity of novel hybrid photocatalysts based on phthalocyanines, subphthalocyanines and porphyrins immobilized onto nanoporous gold. RSC Advances, 2021, 11, 11364-11372.	3.6	2
3	A versatile heterogeneous photocatalyst: nanoporous gold powder modified with a zinc(II) phthalocyanine derivative for singlet oxygen [4 + 2] cycloadditions. Photochemical and Photobiological Sciences, 2021, 20, 547-558.	2.9	5
4	Photocatalytic coatings based on a zinc(ii) phthalocyanine derivative immobilized on nanoporous gold leafs with various pore sizes. RSC Advances, 2020, 10, 53-59.	3.6	4
5	Impact of photosensitizer orientation on the distance dependent photocatalytic activity in zinc phthalocyanine–nanoporous gold hybrid systems. RSC Advances, 2020, 10, 23203-23211.	3.6	2
6	Synergistic Effect in Zinc Phthalocyanine—Nanoporous Gold Hybrid Materials for Enhanced Photocatalytic Oxidations. Catalysts, 2019, 9, 555.	3.5	11
7	A versatile nanoreactor for complementary <i>in situ</i> X-ray and electron microscopy studies in catalysis and materials science. Journal of Synchrotron Radiation, 2019, 26, 1769-1781.	2.4	22
8	Nanoporous gold functionalized with praseodymia–titania mixed oxides as a stable catalyst for the water–gas shift reaction. Physical Chemistry Chemical Physics, 2019, 21, 3278-3286.	2.8	8
9	Aerobic Methanol Oxidation over Unsupported Nanoporous Gold: The Influence of an Added Base. Catalysts, 2019, 9, 416.	3.5	7
10	Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction. Ultramicroscopy, 2019, 196, 74-82.	1.9	15
11	Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Materials Research Letters, 2018, 6, 84-92.	8.7	10
12	Independent control over residual silver content of nanoporous gold by galvanodynamically controlled dealloying. Nanoscale, 2018, 10, 17166-17173.	5.6	22
13	Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance. Journal of Catalysis, 2017, 352, 52-58.	6.2	45
14	Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study. Physical Chemistry Chemical Physics, 2017, 19, 8880-8888.	2.8	37
15	Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS. RSC Advances, 2017, 7, 45344-45350.	3.6	8
16	A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. Journal of Catalysis, 2017, 353, 99-106.	6.2	40
17	A versatile sol–gel coating for mixed oxides on nanoporous gold and their application in the water gas shift reaction. Catalysis Science and Technology, 2016, 6, 5311-5319.	4.1	30
18	<i>In Situ</i> Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature. Microscopy and Microanalysis, 2016, 22, 178-188.	0.4	31

ARNE WITTSTOCK

#	Article	IF	CITATIONS
19	Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Advances, 2016, 6, 83031-83043.	3.6	18
20	Catalysis by Unsupported Skeletal Gold Catalysts. Accounts of Chemical Research, 2014, 47, 731-739.	15.6	114
21	Nanoporous Gold-Supported Ceria for the Water–Gas Shift Reaction: UHV Inspired Design for Applied Catalysis. Journal of Physical Chemistry C, 2014, 118, 29270-29277.	3.1	27
22	Quantitative Phase Composition of TiO ₂ -Coated Nanoporous Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic Behavior. Journal of Physical Chemistry C, 2014, 118, 4078-4084.	3.1	22
23	A versatile synthetic strategy for nanoporous gold–organic hybrid materials for electrochemistry and photocatalysis. Tetrahedron, 2014, 70, 6127-6133.	1.9	14
24	Maximizing Activity and Stability by Turning Gold Catalysis Upside Down: Oxide Particles on Nanoporous Gold. ChemCatChem, 2013, 5, 2037-2043.	3.7	35
25	Investigation of a Nanoporous Gold / TiO2 Catalyst by Electron Microscopy and Tomography. Materials Research Society Symposia Proceedings, 2013, 1504, 1.	0.1	0
26	Nanoporous Gold as a Platform for a Building Block Catalyst. ACS Catalysis, 2012, 2, 2199-2215.	11.2	108
27	Oxygenâ€Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at Ambient Pressures. Angewandte Chemie - International Edition, 2012, 51, 1698-1701.	13.8	106
28	Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discussions, 2011, 152, 87.	3.2	82
29	Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Physical Chemistry Chemical Physics, 2011, 13, 4529.	2.8	121
30	ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity. Nano Letters, 2011, 11, 3085-3090.	9.1	212
31	Nanoporous gold: a new material for catalytic and sensor applications. Physical Chemistry Chemical Physics, 2010, 12, 12919.	2.8	306
32	Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science, 2010, 327, 319-322.	12.6	1,022
33	Effect of Surface Chemistry on the Stability of Gold Nanostructures. Langmuir, 2010, 26, 13736-13740.	3.5	40
34	Surface-chemistry-driven actuation in nanoporousÂgold. Nature Materials, 2009, 8, 47-51.	27.5	488
35	Nanoporous Au: An Unsupported Pure Gold Catalyst?. Journal of Physical Chemistry C, 2009, 113, 5593-5600.	3.1	232
36	Ultralow Loading Pt Nanocatalysts Prepared by Atomic Layer Deposition on Carbon Aerogels. Nano Letters, 2008, 8, 2405-2409.	9.1	244