Natalia Cichon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461130/publications.pdf Version: 2024-02-01

ΝΑΤΑLIA CICHON

#	Article	IF	CITATIONS
1	Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. International Journal of Molecular Sciences, 2022, 23, 1990.	1.8	4
2	The Effect of Fullerenol C60(OH)36 on the Antioxidant Defense System in Erythrocytes. International Journal of Molecular Sciences, 2022, 23, 119.	1.8	6
3	Benefits from Repetitive Transcranial Magnetic Stimulation in Post-Stroke Rehabilitation. Journal of Clinical Medicine, 2022, 11, 2149.	1.0	18
4	Neuroimaging Techniques as Potential Tools for Assessment of Angiogenesis and Neuroplasticity Processes after Stroke and Their Clinical Implications for Rehabilitation and Stroke Recovery Prognosis. Journal of Clinical Medicine, 2022, 11, 2473.	1.0	8
5	The Role of Vitamin D in Stroke Prevention and the Effects of Its Supplementation for Post-Stroke Rehabilitation: A Narrative Review. Nutrients, 2022, 14, 2761.	1.7	13
6	Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study. Brain Sciences, 2021, 11, 391.	1.1	6
7	Biomarkers of Angiogenesis and Neuroplasticity as Promising Clinical Tools for Stroke Recovery Evaluation. International Journal of Molecular Sciences, 2021, 22, 3949.	1.8	18
8	The Role of Supplementation with Natural Compounds in Post-Stroke Patients. International Journal of Molecular Sciences, 2021, 22, 7893.	1.8	4
9	Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. Journal of Clinical Medicine, 2021, 10, 3778.	1.0	25
10	Nutritional Supplements and Neuroprotective Diets and Their Potential Clinical Significance in Post-Stroke Rehabilitation. Nutrients, 2021, 13, 2704.	1.7	26
11	Unusual Bioactive Compounds with Antioxidant Properties in Adjuvant Therapy Supporting Cognition Impairment in Age-Related Neurodegenerative Disorders. International Journal of Molecular Sciences, 2021, 22, 10707.	1.8	8
12	Flavonoids as a Natural Enhancer of Neuroplasticity—An Overview of the Mechanism of Neurorestorative Action. Antioxidants, 2020, 9, 1035.	2.2	40
13	Effect of Rehabilitation with Extremely Low Frequency Electromagnetic Field on Molecular Mechanism of Apoptosis in Post-Stroke Patients. Brain Sciences, 2020, 10, 266.	1.1	16
14	Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. Journal of Rehabilitation Medicine, 2019, 51, 854-860.	0.8	6
15	Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke. Journal of Clinical Medicine, 2019, 8, 2133.	1.0	4
16	Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78, 626-631.	0.6	17
17	Vitamin E Analogue Protects Red Blood Cells against Storage-Induced Oxidative Damage. Transfusion Medicine and Hemotherapy, 2018, 45, 347-354.	0.7	15
18	Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients. Frontiers in Aging Neuroscience, 2018, 10, 294.	1.7	28

NATALIA CICHON

#	Article	IF	CITATIONS
19	Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Advances in Clinical and Experimental Medicine, 2018, 27, 1285-1293.	0.6	15
20	Vitamin C and Trolox decrease oxidative stress and hemolysis in cold-stored human red blood cells. Redox Report, 2017, 22, 445-450.	1.4	19
21	Extremely low frequency electromagnetic field (ELFâ€EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics, 2017, 38, 386-396.	0.9	51
22	Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-9.	1.9	27
23	The multipotent action of electromagnetic field. Biologia (Poland), 2016, 71, 1103-1110.	0.8	5
24	Poststroke Depression as a Factor Adversely Affecting the Level of Oxidative Damage to Plasma Proteins during a Brain Stroke. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	1.9	24