
Heike Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 2011, 14, 236-243.	5.1	797
2	Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 2019, 10, 1124.	12.8	612
3	Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Research, 2019, 162, 320-330.	11.3	231
4	Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology, 2018, 3, 898-908.	13.3	230
5	Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of Environmental Chemical Engineering, 2020, 8, 102245.	6.7	209
6	Tetracyclines and Tetracycline Resistance in Agricultural Soils: Microcosm and Field Studies. Microbial Ecology, 2006, 51, 267-276.	2.8	205
7	Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planetary Health, The, 2019, 3, e357-e369.	11.4	199
8	Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: a pooled analysis. Journal of Antimicrobial Chemotherapy, 2018, 73, 339-347.	3.0	153
9	Pollution-Induced Community Tolerance of Soil Microbial Communities Caused by the Antibiotic Sulfachloropyridazine. Environmental Science & amp; Technology, 2004, 38, 1148-1153.	10.0	139
10	Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross-sectional study. Water Research, 2019, 161, 319-328.	11.3	131
11	Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biology and Biochemistry, 2009, 41, 840-848.	8.8	124
12	Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biology and Biochemistry, 2005, 37, 1882-1892.	8.8	119
13	Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents. Science of the Total Environment, 2018, 631-632, 1572-1581.	8.0	101
14	Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC - Trends in Analytical Chemistry, 2009, 28, 612-618.	11.4	100
15	Ecotoxicological Effects of Activated Carbon Addition to Sediments. Environmental Science & Technology, 2009, 43, 5959-5966.	10.0	99
16	Quantitative Structureâ^'Activity Analysis of the Algae Toxicity of Nitroaromatic Compounds. Chemical Research in Toxicology, 2000, 13, 441-450.	3.3	86
17	Spread of tetracycline resistance genes at a conventional dairy farm. Frontiers in Microbiology, 2015, 6, 536.	3.5	76
18	Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiology Ecology, 2018, 94, .	2.7	72

Некке Schmitt

#	Article	IF	CITATIONS
19	ALGAL TOXICITY OF NITROBENZENES: COMBINED EFFECT ANALYSIS AS A PHARMACOLOGICAL PROBE FOR SIMILAR MODES OF INTERACTION. Environmental Toxicology and Chemistry, 2005, 24, 324.	4.3	71
20	Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal, 2021, 19, e06651.	1.8	68
21	Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. Environment International, 2020, 143, 105971.	10.0	66
22	Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biology and Biochemistry, 2015, 81, 259-265.	8.8	65
23	Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data. Journal of Antimicrobial Chemotherapy, 2019, 74, 807-816.	3.0	64
24	The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. Journal of Antimicrobial Chemotherapy, 2019, 74, 865-876.	3.0	63
25	The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Current Opinion in Microbiology, 2021, 64, 152-158.	5.1	54
26	Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biology and Biochemistry, 2013, 57, 995-1002.	8.8	52
27	Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biology and Biochemistry, 2013, 57, 822-829.	8.8	51
28	Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. Journal of Antimicrobial Chemotherapy, 2019, 74, 2596-2604.	3.0	49
29	Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content. Chemosphere, 2013, 93, 2413-2418.	8.2	46
30	Impact of incorporated fresh 13C potato tissues on the bacterial and fungal community composition of soil. Soil Biology and Biochemistry, 2012, 49, 88-95.	8.8	45
31	Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine European countries. Journal of Antimicrobial Chemotherapy, 2019, 74, 798-806.	3.0	45
32	Setting a baseline for global urban virome surveillance in sewage. Scientific Reports, 2020, 10, 13748.	3.3	39
33	Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area. Environmental Science & Technology, 2019, 53, 7746-7758.	10.0	38
34	Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses. International Journal of Food Microbiology, 2015, 215, 57-63.	4.7	37
35	Annual dynamics of antimicrobials and resistance determinants in flocculent and aerobic granular sludge treatment systems. Water Research, 2021, 190, 116752.	11.3	35
36	ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiology and Infection, 2017, 145, 2003-2010.	2.1	34

Некке Schmitt

#	Article	IF	CITATIONS
37	Assessing the Ecotoxicologic Hazards of a Pandemic Influenza Medical Response. Environmental Health Perspectives, 2011, 119, 1084-1090.	6.0	33
38	Hepatitis E Virus in Farmed Rabbits, Wild Rabbits and Petting Farm Rabbits in the Netherlands. Food and Environmental Virology, 2016, 8, 227-229.	3.4	33
39	Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study. Environment International, 2020, 143, 105939.	10.0	33
40	Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Current Opinion in Microbiology, 2022, 65, 40-46.	5.1	33
41	Air exposure as a possible route for ESBL in pig farmers. Environmental Research, 2017, 155, 359-364.	7.5	32
42	The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches. Science of the Total Environment, 2020, 737, 139563.	8.0	31
43	Effects of Dutch livestock production on human health and the environment. Science of the Total Environment, 2020, 737, 139702.	8.0	30
44	The EU-project ERAPharm - Incentives for the further development of guidance documents? (4 pages). Environmental Science and Pollution Research, 2005, 12, 62-65.	5.3	27
45	Targeted metagenomics reveals inferior resilience of farm soil resistome compared to soil microbiome after manure application. Science of the Total Environment, 2021, 770, 145399.	8.0	27
46	Abundance and Antimicrobial Resistance of Three Bacterial Species along a Complete Wastewater Pathway. Microorganisms, 2019, 7, 312.	3.6	24
47	Do wastewater treatment plants increase antibiotic resistant bacteria or genes in the environment? Protocol for a systematic review. Systematic Reviews, 2019, 8, 304.	5.3	24
48	A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure. Chemosphere, 2019, 224, 544-553.	8.2	23
49	ON THE LIMITS OF TOXICANT-INDUCED TOLERANCE TESTING: COTOLERANCE AND RESPONSE VARIATION OF ANTIBIOTIC EFFECTS. Environmental Toxicology and Chemistry, 2006, 25, 1961.	4.3	22
50	Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Environmental Research, 2022, 208, 112715.	7.5	21
51	Nationwide surveillance reveals frequent detection of carbapenemase-producing Enterobacterales in Dutch municipal wastewater. Science of the Total Environment, 2021, 776, 145925.	8.0	20
52	Temperature and Nutrient Limitations Decrease Transfer of Conjugative IncP-1 Plasmid pKJK5 to Wild Escherichia coli Strains. Frontiers in Microbiology, 2021, 12, 656250.	3.5	20
53	Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotics, 2021, 10, 478.	3.7	17
54	Occupational Exposure and Carriage of Antimicrobial Resistance Genes (<i>tetW</i> , <i>ermB</i>) in Pig Slaughterhouse Workers. Annals of Work Exposures and Health, 2020, 64, 125-137.	1.4	16

#	Article	IF	CITATIONS
55	Updated research agenda for water, sanitation and antimicrobial resistance. Journal of Water and Health, 2020, 18, 858-866.	2.6	15

 $_{56}$ Ecological Risk Assessment of Pharmaceuticals in the Transboundary Vecht River (Germany and The) Tj ETQq0 0 0 rg BT /Overlock 10 Tf $_{10}^{56}$

57	Recommendations on the Environmental Risk Assessment of Pharmaceuticals - Effect Characterization. Integrated Environmental Assessment and Management, 2007, preprint, 1.	2.9	9
58	Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents — the AWARE Study. European Journal of Clinical Microbiology and Infectious Diseases, 2021, , 1.	2.9	9
59	Association of antimicrobial usage with faecal abundance of aph(3')-III, ermB, sul2 and tetW resistance genes in veal calves in three European countries. International Journal of Antimicrobial Agents, 2020, 56, 106131.	2.5	8
60	Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment. Microorganisms, 2021, 9, 718.	3.6	8
61	Risk Factors for Antimicrobial Resistance in Turkey Farms: A Cross-Sectional Study in Three European Countries. Antibiotics, 2021, 10, 820.	3.7	8
62	International Travel as a Risk Factor for Carriage of Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Large Sample of European Individuals—The AWARE Study. International Journal of Environmental Research and Public Health, 2022, 19, 4758.	2.6	7
	(Antibiotic-Resistant) <i>E. coli</i> in the Dutch–German Vecht Catchment─Monitoring and Modeling.		
63	Ènvironmental Science & amp; Technology, 2022, 56, 15064-15073.	10.0	7
63	Ènvironmental Science & amp; Technology, 2022, 56, 15064-15073. Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus. Environmental Microbiology, 2021, 23, 224-238.	10.0 3.8	7
	Environmental Science & amp; Technology, 2022, 56, 15064-15073. Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus.		
64	 Environmental Science & amp; Technology, 2022, 56, 15064-15073. Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus. Environmental Microbiology, 2021, 23, 224-238. Antimicrobial resistance genes <i>aph(3â€2)-III</i>, <i>erm</i>(i>(B), <i>sul2</i> and <i>tet</i>(W) abundance in animal faeces, meat, production environments and human faeces in Europe. Journal of Antimicrobial 	3.8	6
64 65	 Environmental Science & amp; Technology, 2022, 56, 15064-15073. Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus. Environmental Microbiology, 2021, 23, 224-238. Antimicrobial resistance genes <i>aph(3â€2)-III</i>, <i>erm</i>(I)>(B), <i>sul2</i> and <i>tet</i>(W) abundance in animal faeces, meat, production environments and human faeces in Europe. Journal of Antimicrobial Chemotherapy, 2022, 77, 1883-1893. Quantitative assessment of soil functioning across a representative range of Dutch soils. Ecological 	3.8 3.0	6 6