Albert Jelke Kooistra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246110/publications.pdf

Version: 2024-02-01

172457 197818 2,743 50 29 citations h-index papers

49 g-index 53 53 53 3253 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The G protein database, GproteinDb. Nucleic Acids Research, 2022, 50, D518-D525.	14.5	49
2	KiSSim: Predicting Off-Targets from Structural Similarities in the Kinome. Journal of Chemical Information and Modeling, 2022, 62, 2600-2616.	5.4	3
3	KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids Research, 2021, 49, D562-D569.	14.5	74
4	Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature, 2021, 589, 148-153.	27.8	55
5	GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Research, 2021, 49, D335-D343.	14.5	254
6	Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 2021, 12, 3307.	12.8	41
7	GPCR activation mechanisms across classes and macro/microscales. Nature Structural and Molecular Biology, 2021, 28, 879-888.	8.2	98
8	An online GPCR structure analysis platform. Nature Structural and Molecular Biology, 2021, 28, 875-878.	8.2	16
9	Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews, 2021, 73, 1698-1736.	16.0	61
10	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
11	Utilizing drug-target-event relationships to unveil safety patterns in pharmacovigilance. Expert Opinion on Drug Safety, 2020, 19, 961-968.	2.4	5
12	Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Frontiers in Chemistry, 2020, 8, 608030.	3.6	5
13	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorganic and Medicinal Chemistry, 2019, 27, 4013-4029.	3.0	11
14	The Landscape of Atypical and Eukaryotic Protein Kinases. Trends in Pharmacological Sciences, 2019, 40, 818-832.	8.7	87
15	Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications, 2019, 10, 2674.	12.8	240
16	Route to Prolonged Residence Time at the Histamine H ₁ Receptor: Growing from Desloratadine to Rupatadine. Journal of Medicinal Chemistry, 2019, 62, 6630-6644.	6.4	15
17	Covalent Inhibition of the Histamine H3 Receptor. Molecules, 2019, 24, 4541.	3.8	5
18	Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. Journal of Medicinal Chemistry, 2019, 62, 3784-3839.	6.4	53

#	Article	lF	CITATIONS
19	Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology. Journal of the American Chemical Society, 2018, 140, 4232-4243.	13.7	50
20	Structural insights into serotonin receptor ligands polypharmacology. European Journal of Medicinal Chemistry, 2018, 151, 797-814.	5.5	7
21	Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Scientific Reports, 2018, 8, 1572.	3.3	48
22	3Dâ€eâ€Chem: Structural Cheminformatics Workflows for Computerâ€Aided Drug Discovery. ChemMedChem, 2018, 13, 614-626.	3.2	17
23	Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends in Pharmacological Sciences, 2018, 39, 494-512.	8.7	67
24	A Structural Framework for GPCR Chemogenomics: What's In a Residue Number?. Methods in Molecular Biology, 2018, 1705, 73-113.	0.9	6
25	3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling, 2017, 57, 115-121.	5.4	21
26	Kinase-Centric Computational Drug Development. Annual Reports in Medicinal Chemistry, 2017, , 197-236.	0.9	9
27	Structural Chemogenomics Databases to Navigate Protein–Ligand Interaction Space. , 2017, , 444-471.		1
28	Molecular interaction fingerprint approaches for GPCR drug discovery. Current Opinion in Pharmacology, 2016, 30, 59-68.	3.5	43
29	Identification of Ligand Binding Hot Spots of the Histamine H ₁ Receptor following Structure-Based Fragment Optimization. Journal of Medicinal Chemistry, 2016, 59, 9047-9061.	6.4	26
30	Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports, 2016, 6, 28288.	3.3	79
31	KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Research, 2016, 44, D365-D371.	14.5	132
32	PDEStrlAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 7029-7065.	6.4	54
33	The Viral G Protein-Coupled Receptor ORF74 Hijacks \hat{l}^2 -Arrestins for Endocytic Trafficking in Response to Human Chemokines. PLoS ONE, 2015, 10, e0124486.	2.5	17
34	Analyzing Multitarget Activity Landscapes Using Protein–Ligand Interaction Fingerprints: Interaction Cliffs. Journal of Chemical Information and Modeling, 2015, 55, 251-262.	5.4	23
35	Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H ₄ receptor. MedChemComm, 2015, 6, 1003-1017.	3.4	33
36	Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A \hat{I}^2 -Adrenoceptor Case Study. Journal of Chemical Information and Modeling, 2015, 55, 1045-1061.	5.4	49

#	Article	IF	CITATIONS
37	Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT ₃ A, Histamine H ₁ , and Histamine H ₄ , 2015, 55, 1030-1044.	5.4	17
38	From Three-Dimensional GPCR Structure to Rational Ligand Discovery. Advances in Experimental Medicine and Biology, 2014, 796, 129-157.	1.6	30
39	KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry, 2014, 57, 249-277.	6.4	243
40	The Receptor Concept in 3D: From Hypothesis and Metaphor to GPCR–Ligand Structures. Neurochemical Research, 2014, 39, 1850-1861.	3.3	6
41	Mapping histamine H4 receptor–ligand binding modes. MedChemComm, 2013, 4, 193-204.	3.4	27
42	A structural chemogenomics analysis of aminergic <scp>GPCRs</scp> : lessons for histamine receptor ligand design. British Journal of Pharmacology, 2013, 170, 101-126.	5.4	74
43	Discovery of Novel <i>Trypanosoma brucei</i> Phosphodiesterase B1 Inhibitors by Virtual Screening against the Unliganded TbrPDEB1 Crystal Structure. Journal of Medicinal Chemistry, 2013, 56, 2087-2096.	6.4	51
44	From Heptahelical Bundle to Hits from the Haystack. Methods in Enzymology, 2013, 522, 279-336.	1.0	47
45	Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discovery Today, 2013, 18, 323-330.	6.4	30
46	Virtual Fragment Screening: Discovery of Histamine H ₃ Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. Journal of Chemical Information and Modeling, 2012, 52, 3308-3324.	5.4	64
47	Identification of novel $\hat{l}\pm7$ nicotinic receptor ligands by in silico screening against the crystal structure of a chimeric $\hat{l}\pm7$ receptor ligand binding domain. Bioorganic and Medicinal Chemistry, 2012, 20, 5992-6002.	3.0	11
48	Molecular Determinants of Ligand Binding Modes in the Histamine H4Receptor: Linking Ligand-Based Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Models to in Silico Guided Receptor Mutagenesis Studies. Journal of Medicinal Chemistry, 2011, 54, 8136-8147.	6.4	50
49	Crystal Structure-Based Virtual Screening for Fragment-like Ligands of the Human Histamine H ₁ Receptor. Journal of Medicinal Chemistry, 2011, 54, 8195-8206.	6.4	189
50	Electron Density Fingerprints (EDprints): Virtual Screening Using Assembled Information of Electron Density. Journal of Chemical Information and Modeling, 2010, 50, 1772-1780.	5.4	6