Thanayut Kaewmaraya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461090/publications.pdf

Version: 2024-02-01

394421 454955 39 982 19 30 citations h-index g-index papers 39 39 39 1236 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Defect and Substitution-Induced Silicene Sensor to Probe Toxic Gases. Journal of Physical Chemistry C, 2016, 120, 25256-25262.	3.1	81
2	Novel green phosphorene as a superior chemical gas sensing material. Journal of Hazardous Materials, 2021, 401, 123340.	12.4	71
3	Drastic Improvement in Gas-Sensing Characteristics of Phosphorene Nanosheets under Vacancy Defects and Elemental Functionalization. Journal of Physical Chemistry C, 2018, 122, 20186-20193.	3.1	60
4	Adsorption characteristics of DNA nucleobases, aromatic amino acids and heterocyclic molecules on silicene and germanene monolayers. Sensors and Actuators B: Chemical, 2018, 255, 2713-2720.	7.8	56
5	A manganese hexacyanoferrate framework with enlarged ion tunnels and twoâ€species redox reaction for aqueous Al-ion batteries. Nano Energy, 2021, 84, 105945.	16.0	54
6	Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. ACS Sensors, 2018, 3, 867-874.	7.8	53
7	The study of structural, morphological and optical properties of (Al, Ga)-doped ZnO: DFT and experimental approaches. Applied Surface Science, 2019, 480, 621-635.	6.1	48
8	Functionalization of hydrogenated silicene with alkali and alkaline earth metals for efficient hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18900.	2.8	45
9	Binder-free trimetallic phosphate nanosheets as an electrode: Theoretical and experimental investigation. Journal of Power Sources, 2021, 513, 230556.	7.8	45
10	Crystal Phase Effects in Si Nanowire Polytypes and Their Homojunctions. Nano Letters, 2016, 16, 5694-5700.	9.1	38
11	Graphitic carbon nitride nano sheets functionalized with selected transition metal dopants: an efficient way to store CO ₂ . Nanotechnology, 2018, 29, 415502.	2.6	30
12	Enhanced thermoelectric properties of N-doped ZnO and SrTiO3: A first-principles study. Applied Surface Science, 2018, 446, 47-58.	6.1	26
13	Revealing an unusual transparent phase of superhard iron tetraboride under high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17050-17053.	7.1	23
14	Electronic structure and ionic diffusion of green battery cathode material: Mg2Mo6S8. Solid State lonics, 2014, 261, 17-20.	2.7	23
15	The ideal commensurate value of Sc and the superconducting phase under high pressure. Journal of Applied Physics, 2018, 124, 225901.	2.5	23
16	Strain-induced tunability of optical and photocatalytic properties of ZnO mono-layer nanosheet. Computational Materials Science, 2014, 91, 38-42.	3.0	22
17	Accurate Estimation of Band Offsets in Group IV Polytype Junctions: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 5820-5828.	3.1	22
18	Functionalized carbon nitride (g-CN) monolayer as a promising energy storage material: A density functional theory study. Applied Surface Science, 2017, 419, 708-712.	6.1	22

#	Article	IF	CITATIONS
19	Efficient suppression of the shuttle effect in Na–S batteries with an As ₂ S ₃ anchoring monolayer. Physical Chemistry Chemical Physics, 2020, 22, 27300-27307.	2.8	20
20	Structural Phase Transitions, Electronic Properties, and Hardness of RuB ₄ under High Pressure in Comparison with FeB ₄ and OsB ₄ . Journal of Physical Chemistry C, 2020, 124, 14804-14810.	3.1	20
21	Elucidating Synergistic Mechanisms of Adsorption and Electrocatalysis of Polysulfides on Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition MXenes for Na–S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries. ACS Applied Materials & Double-Transition MXenes for Na—S Batteries for Na⧠Batteries	8.0	18
22	Improved sensing characteristics of methane over ZnO nano sheets upon implanting defects and foreign atoms substitution. Nanotechnology, 2017, 28, 415502.	2.6	17
23	Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Scientific Reports, 2016, 6, 26000.	3.3	16
24	Water adsorption on ZnO(101ì,,0): The role of intrinsic defects. Europhysics Letters, 2012, 97, 17014.	2.0	15
25	Electronic Properties of <i>h</i> a∈BCN–Blue Phosphorene van der Waals Heterostructures. ChemPhysChem, 2018, 19, 612-618.	2.1	14
26	Theoretical investigation of xenon-hydrogen solids under pressure using <i>ab initio</i> DFT and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:mrow></mml:math> calculation Physical Review B, 2011, 84, .	3.2 is.	13
27	Hybrid density functional study of electronic and optical properties of phase change memory material: Ge2Sb2Te5. Journal of Applied Physics, 2013, 113, 033510.	2.5	13
28	Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications. Applied Surface Science, 2020, 504, 144327.	6.1	13
29	Room temperature NO2 sensing performance of a-C-decorated TeO2 nanowires. Sensors and Actuators B: Chemical, 2022, 363, 131853.	7.8	12
30	Molecular dynamics study of amorphous Ga-doped In2O3: A promising material for phase change memory devices. Applied Physics Letters, 2013, 103, .	3.3	11
31	Structural and Vibrational Properties of Layered Data Storage Material: Ge ₂ Sb ₂ Te ₅ . Science of Advanced Materials, 2013, 5, 1493-1497.	0.7	10
32	Two-dimensional titanium carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXenes to inhibit the shuttle effect in sodium sulfur batteries. Physical Chemistry Chemical Physics, 2022, 24, 4187-4195.	2.8	10
33	Scavenging properties of yttrium nitride monolayer towards toxic sulfur gases. Applied Surface Science, 2021, 537, 147711.	6.1	8
34	The quantum confined Stark effect in N-doped ZnO/ZnO/N-doped ZnO nanostructures for infrared and terahertz applications. Nanotechnology, 2020, 31, 445207.	2.6	8
35	A new, layered monoclinic phase of Co ₃ O ₄ at high pressure. Physical Chemistry Chemical Physics, 2015, 17, 19957-19961.	2.8	6
36	Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides. Computational Materials Science, 2013, 79, 804-810.	3.0	5

#	Article	IF	CITATIONS
37	Extrinsic Doping in Group IV Hexagonal-Diamond-Type Crystals. Journal of Physical Chemistry C, 2020, 124, 17290-17298.	3.1	5
38	Electronic structures and optical properties of nanoporous complex oxide 12CaO·7Al2O3 (C12A7) under high pressure. Computational Materials Science, 2021, 194, 110456.	3.0	3
39	Conversion of CO ₂ into Formic Acid on Transition Metal-Porphyrin-like Graphene: First Principles Calculations. ACS Omega, 2021, 6, 27045-27051.	3.5	3