## Hailong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2460689/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multifunctional porous hydrogen-bonded organic framework materials. Chemical Society Reviews, 2019, 48, 1362-1389.                                                                                                                                                                  | 38.1 | 751       |
| 2  | Microporous metal–organic framework with dual functionalities for highly efficient removal of<br>acetylene from ethylene/acetylene mixtures. Nature Communications, 2015, 6, 7328.                                                                                                  | 12.8 | 404       |
| 3  | A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation.<br>Journal of the American Chemical Society, 2015, 137, 9963-9970.                                                                                                                        | 13.7 | 360       |
| 4  | Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient<br>Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143,<br>7104-7113.                                                                     | 13.7 | 198       |
| 5  | Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for<br>Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.                                                                                      | 13.7 | 181       |
| 6  | Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous<br>Catalysis. Journal of the American Chemical Society, 2019, 141, 8737-8740.                                                                                                              | 13.7 | 178       |
| 7  | A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective<br>separation of C <sub>2</sub> H <sub>4</sub> /C <sub>2</sub> H <sub>6</sub> . Chemical Communications,<br>2014, 50, 13081-13084.                                                    | 4.1  | 147       |
| 8  | Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage.<br>Energy and Environmental Science, 2015, 8, 2504-2511.                                                                                                                         | 30.8 | 126       |
| 9  | A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High<br>C <sub>2</sub> H <sub>2</sub> Storage and Significantly Enhanced<br>C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub> Separation at Ambient Conditions. Inorganic<br>Chemistry. 2016. 55. 7214-7218. | 4.0  | 124       |
| 10 | Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework:<br>Permanent Porosity and Proton Conduction. Crystal Growth and Design, 2016, 16, 5831-5835.                                                                                               | 3.0  | 120       |
| 11 | Twist angle perturbation on mixed (phthalocyaninato)(porphyrinato) dysprosium(iii) double-decker<br>SMMs. Chemical Communications, 2012, 48, 2973.                                                                                                                                  | 4.1  | 113       |
| 12 | Synthesis, Crystal Structures, and Luminescent Properties of Phenoxo-Bridged Heterometallic<br>Trinuclear Propeller- and Sandwich-Like Schiff-Base Complexes. Inorganic Chemistry, 2009, 48,<br>5946-5956.                                                                          | 4.0  | 103       |
| 13 | Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential<br>Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18011-18016.                                                                                                    | 13.8 | 103       |
| 14 | Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage.<br>Nature Communications, 2020, 11, 1047.                                                                                                                                               | 12.8 | 100       |
| 15 | Post-synthetic modification of porous organic cages. Chemical Society Reviews, 2021, 50, 8874-8886.                                                                                                                                                                                 | 38.1 | 98        |
| 16 | Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chemical Communications, 2017, 53, 11150-11153.                                                                                                                   | 4.1  | 93        |
| 17 | Sandwich-type tetrakis(phthalocyaninato) dysprosium–cadmium quadruple-decker SMM. Chemical<br>Communications, 2011, 47, 9624.                                                                                                                                                       | 4.1  | 86        |
| 18 | Robust Biological Hydrogenâ€Bonded Organic Framework with Postâ€Functionalized Rhenium(I) Sites for<br>Efficient Heterogeneous Visibleâ€Lightâ€Driven CO <sub>2</sub> Reduction. Angewandte Chemie -<br>International Edition, 2021, 60, 8983-8989.                                 | 13.8 | 83        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly<br>Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022,<br>61, .                                                                           | 13.8 | 83        |
| 20 | A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.                                                                                                                           | 10.3 | 78        |
| 21 | Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient lodine<br>Vapor Capture Performance. Journal of the American Chemical Society, 2022, 144, 12390-12399.                                                                                                   | 13.7 | 77        |
| 22 | Magneto-chiral dichroism in chiral mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker<br>SMMs. Inorganic Chemistry Frontiers, 2014, 1, 167.                                                                                                                                       | 6.0  | 74        |
| 23 | Highly Interpenetrated Robust Microporous Hydrogen-Bonded Organic Framework for Gas<br>Separation. Crystal Growth and Design, 2017, 17, 6132-6137.                                                                                                                                             | 3.0  | 74        |
| 24 | Diverse Ni( <scp>ii</scp> ) MOFs constructed from asymmetric semi-rigid V-shaped multicarboxylate<br>ligands: structures and magnetic properties. CrystEngComm, 2010, 12, 1096-1102.                                                                                                           | 2.6  | 73        |
| 25 | Microporous Lanthanide Metal–Organic Framework Constructed from Lanthanide Metalloligand for<br>Selective Separation of C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub> and<br>C <sub>2</sub> H <sub>2</sub> /CH <sub>4</sub> at Room Temperature. Inorganic Chemistry, 2017, 56,<br>7145-7150. | 4.0  | 72        |
| 26 | A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogenâ€Bonded Organic Framework<br>for Propyne/Propylene Separation. Angewandte Chemie - International Edition, 2021, 60, 25942-25948.                                                                                        | 13.8 | 68        |
| 27 | High acetylene/ethylene separation in a microporous zinc( <scp>ii</scp> ) metal–organic framework<br>with low binding energy. Chemical Communications, 2016, 52, 1166-1169.                                                                                                                    | 4.1  | 67        |
| 28 | A sandwich-type phthalocyaninato metal sextuple-decker complex: synthesis and NLO properties.<br>Chemical Communications, 2013, 49, 889-891.                                                                                                                                                   | 4.1  | 61        |
| 29 | Tetrakis(phthalocyaninato) Rareâ€Earth–Cadmium–Rareâ€Earth Quadrupleâ€Decker Sandwich SMMs:<br>Suppression of QTM by Longâ€Distance f–f Interactions. Chemistry - A European Journal, 2012, 18,<br>7691-7694.                                                                                  | 3.3  | 59        |
| 30 | Synthesis, crystal structures, and luminescent properties of Cd( <scp>ii</scp> ) coordination polymers<br>assembled from asymmetric semi-rigid V-shaped multicarboxylate ligands. CrystEngComm, 2011, 13,<br>279-286.                                                                          | 2.6  | 53        |
| 31 | An amino-decorated NbO-type metal–organic framework for high C <sub>2</sub> H <sub>2</sub><br>storage and selective CO <sub>2</sub> capture. RSC Advances, 2015, 5, 77417-77422.                                                                                                               | 3.6  | 53        |
| 32 | Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H <sub>2</sub> Production<br>under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 3988-3995.                                                                                                                  | 4.0  | 49        |
| 33 | Synthesis, Crystal Structures, and Magnetic Properties of One-Dimensional Mixed Cyanide- and<br>Phenolate-Bridged Heterotrimetallic Complexes. Crystal Growth and Design, 2010, 10, 4231-4234.                                                                                                 | 3.0  | 48        |
| 34 | Synthesis, Structure, and Singleâ€Molecule Magnetic Properties of Rareâ€Earth Sandwich Complexes with<br>Mixed Phthalocyanine and Schiff Base Ligands. Chemistry - A European Journal, 2013, 19, 2266-2270.                                                                                    | 3.3  | 48        |
| 35 | New Sandwichâ€Type Phthalocyaninato–Metal Quintupleâ€Decker Complexes. Chemistry - A European<br>Journal, 2012, 18, 1047-1049.                                                                                                                                                                 | 3.3  | 47        |
| 36 | Co-crystallized fullerene and a mixed (phthalocyaninato)(porphyrinato) dysprosium double-decker<br>SMM. Chemical Science, 2014, 5, 3214-3220.                                                                                                                                                  | 7.4  | 40        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A porous metal–organic framework with an elongated anthracene derivative exhibiting a high<br>working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.                                                             | 10.3 | 40        |
| 38 | A new microporous metal–organic framework with open metal sites and exposed carboxylic acid<br>groups for selective separation of CO <sub>2</sub> /CH <sub>4</sub> and<br>C <sub>2</sub> H <sub>2</sub> /CH <sub>4</sub> . RSC Advances, 2014, 4, 36419. | 3.6  | 37        |
| 39 | A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal<br>Growth and Design, 2016, 16, 3395-3399.                                                                                                                   | 3.0  | 36        |
| 40 | Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 8048-8057.                                                                                      | 8.0  | 36        |
| 41 | Synthesis, crystal structures, and luminescence properties of seven tripodal imidazole-based<br>Zn/Cd( <scp>ii</scp> ) coordination polymers induced by tricarboxylates. CrystEngComm, 2014, 16,<br>4554-4561.                                           | 2.6  | 35        |
| 42 | Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen<br>Generation. Chemistry of Materials, 2022, 34, 1956-1964.                                                                                              | 6.7  | 35        |
| 43 | Porous organic cages for efficient gas selective separation and iodine capture. Chemical Engineering<br>Journal, 2022, 428, 131129.                                                                                                                      | 12.7 | 34        |
| 44 | Mixed (phthalocyaninato)(porphyrinato) heterometal complexes with sandwich quadruple-decker molecular structure. Chemical Communications, 2011, 47, 6879.                                                                                                | 4.1  | 33        |
| 45 | A Twofold Interpenetrated Metal–Organic Framework with High Performance in Selective Separation of C <sub>2</sub> H <sub>2</sub> /CH <sub>4</sub> . ChemPlusChem, 2016, 81, 770-774.                                                                     | 2.8  | 31        |
| 46 | Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling<br>on the SMM behavior. Dalton Transactions, 2013, 42, 15355.                                                                                        | 3.3  | 30        |
| 47 | Two-dimensional metal–organic frameworks for selective separation of<br>CO <sub>2</sub> /CH <sub>4</sub> and CO <sub>2</sub> /N <sub>2</sub> . Materials Chemistry Frontiers,<br>2017, 1, 1514-1519.                                                     | 5.9  | 30        |
| 48 | Multifunctional Tubular Organic Cage‣upported Ultrafine Palladium Nanoparticles for Sequential<br>Catalysis. Angewandte Chemie, 2019, 131, 18179-18184.                                                                                                  | 2.0  | 30        |
| 49 | Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly<br>Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .                                                                     | 2.0  | 30        |
| 50 | Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin<br>Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials<br>& Interfaces, 2019, 11, 45118-45125.             | 8.0  | 29        |
| 51 | The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 2019, 7, 10240-10246.                                                                                              | 5.5  | 27        |
| 52 | 5,10,15,20-tetra(4-pyridyl)porphyrinato zinc coordination polymeric particles with different shapes and luminescent properties. CrystEngComm, 2012, 14, 7780.                                                                                            | 2.6  | 26        |
| 53 | Metal–Organic Framework with Trifluoromethyl Groups for Selective C <sub>2</sub> H <sub>2</sub><br>and CO <sub>2</sub> Adsorption. Crystal Growth and Design, 2018, 18, 4522-4527.                                                                       | 3.0  | 26        |
| 54 | A robust redox-active hydrogen-bonded organic framework for rechargeable batteries. Journal of<br>Materials Chemistry A, 2022, 10, 1808-1814.                                                                                                            | 10.3 | 25        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Threefold Interpenetrated Pillared‣ayer Metal–Organic Framework for Selective Separation of<br>C <sub>2</sub> H <sub>2</sub> /CH <sub>4</sub> and CO <sub>2</sub> /CH <sub>4</sub> . ChemPlusChem,<br>2016, 81, 764-769.   | 2.8  | 24        |
| 56 | Robust Biological Hydrogenâ€Bonded Organic Framework with Postâ€Functionalized Rhenium(I) Sites for<br>Efficient Heterogeneous Visibleâ€Lightâ€Driven CO <sub>2</sub> Reduction. Angewandte Chemie, 2021, 133,<br>9065-9071. | 2.0  | 23        |
| 57 | Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato)<br>Dysprosium(III) SMMs. Scientific Reports, 2015, 5, 8838.                                                               | 3.3  | 22        |
| 58 | A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for<br>Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.                                                | 3.0  | 21        |
| 59 | A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation<br>and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016,<br>4470-4475.            | 2.0  | 20        |
| 60 | Photonic Switching Porous Organic Polymers toward Reversible Control of Heterogeneous<br>Photocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 56491-56498.                                                          | 8.0  | 19        |
| 61 | Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light<br>Photocatalysis. CCS Chemistry, 2022, 4, 2588-2596.                                                                            | 7.8  | 18        |
| 62 | Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO <sub>2</sub><br>fixation to cyclic carbonates. Inorganic Chemistry Frontiers, 2021, 8, 2880-2888.                                       | 6.0  | 16        |
| 63 | Atomically Dispersed NiN <sub>3</sub> Sites on Highly Defective Microâ€Mesoporous Carbon for<br>Superior CO <sub>2</sub> Electroreduction. Small, 2022, 18, e2107997.                                                       | 10.0 | 16        |
| 64 | Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(iii)<br>double-deckers with mixed tetrapyrrole ligands. RSC Advances, 2015, 5, 17732-17737.                                               | 3.6  | 15        |
| 65 | A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(III) ion and nitrobenzene. Dyes and Pigments, 2020, 173, 107929.                                                                     | 3.7  | 15        |
| 66 | A Robust Hydrogen-Bonded Organic Framework with 7-Fold Interpenetration Nets and High Permanent<br>Microporosity. Crystal Growth and Design, 2022, 22, 1817-1823.                                                            | 3.0  | 15        |
| 67 | A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogenâ€Bonded Organic Framework<br>for Propyne/Propylene Separation. Angewandte Chemie, 2021, 133, 26146-26152.                                             | 2.0  | 14        |
| 68 | Photoactive Porphyrinâ€Based Metalâ€Organic Framework Nanosheets. European Journal of Inorganic<br>Chemistry, 2019, 2019, 4815-4819.                                                                                         | 2.0  | 13        |
| 69 | The Origin of the Reproduction of Different Nitrogen Uptakes in Covalent Organic Frameworks<br>(COFs). Chemistry - A European Journal, 2019, 25, 2303-2312.                                                                  | 3.3  | 13        |
| 70 | Mixed (phthalocyanine)(Schiff-base) terbium(iii)–alkali metal(i)/zinc(ii) complexes: synthesis,<br>structures, and spectroscopic properties. CrystEngComm, 2013, 15, 10383.                                                  | 2.6  | 12        |
| 71 | A Mixed Porphyrin–Schiff Base Dysprosium(III) Singleâ€Molecule Magnet. European Journal of Inorganic<br>Chemistry, 2016, 2016, 4194-4198                                                                                     | 2.0  | 12        |
| 72 | Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium Double-Decker Single-Ion Magnets.<br>Inorganic Chemistry, 2019, 58, 2422-2429.                                                                                   | 4.0  | 12        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Triptycene-Based Porous Chalcogen-Bonded Organic Frameworks. Crystal Growth and Design, 2021, 21, 6497-6503.                                                                                                                               | 3.0 | 11        |
| 74 | A sandwich-type tetrakis(phthalocyaninato) europium–cadmium quadruple-decker complex:<br>structural, spectroscopic, OFET, and gas sensing properties. New Journal of Chemistry, 2019, 43,<br>15763-15767.                                  | 2.8 | 9         |
| 75 | Magnetic investigations over reversibly switched chiral (phthalocyaninato)(porphyrinato)<br>dysprosium double-decker compounds. Dalton Transactions, 2019, 48, 1586-1590.                                                                  | 3.3 | 9         |
| 76 | Controlling the Crystal Field of Heteroleptic Bis(phthalocyaninato) Erbium for Fieldâ€Induced Magnetic<br>Relaxation. European Journal of Inorganic Chemistry, 2019, 2019, 2940-2946.                                                      | 2.0 | 9         |
| 77 | Stimuli-Responsive Porous Molecular Crystal with Reversible Modulation of Porosity. ACS Applied Materials & amp; Interfaces, 2022, 14, 1519-1525.                                                                                          | 8.0 | 9         |
| 78 | Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen<br>Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10,<br>2001-2009.                        | 6.7 | 8         |
| 79 | Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chemical Science, 2022, 13, 7014-7020.                                                                               | 7.4 | 8         |
| 80 | High Fluorescence Porous Organic Cage for Sensing Divalent Palladium Ion and Encapsulating Fine<br>Palladium Nanoparticles. Chinese Journal of Chemistry, 2022, 40, 385-391.                                                               | 4.9 | 7         |
| 81 | Fluorescence charge-assisted hydrogen-bonded organic frameworks assembled from<br>tetraphenylethene amidinium cation. Inorganic Chemistry Communication, 2022, 139, 109396.                                                                | 3.9 | 7         |
| 82 | Metallomacrocycle-supported interpenetration networks assembled from binary N-containing ligands. CrystEngComm, 2016, 18, 3506-3512.                                                                                                       | 2.6 | 6         |
| 83 | Molecular assembly-induced charge transfer between a mixed (phthalocyaninato)(porphyrinato)<br>yttrium triple-decker and a fullerene. Inorganic Chemistry Frontiers, 2019, 6, 654-658.                                                     | 6.0 | 5         |
| 84 | High mobility at the interface of the cocrystallized sandwich-type tetrapyrrole metal compound and fullerene layers. Inorganic Chemistry Frontiers, 2019, 6, 3345-3349.                                                                    | 6.0 | 5         |
| 85 | Elucidating π–π interaction-induced extension effect in sandwich phthalocyaninato compounds. RSC<br>Advances, 2020, 10, 317-322.                                                                                                           | 3.6 | 5         |
| 86 | Single-Ion Magnet Investigation of ABAB-Type Tetrachloro- and Tetraalkoxy-Substituted<br>Bis(phthalocyaninato) Terbium Double-Decker with D 2 Symmetrical Ligand Field. European Journal of<br>Inorganic Chemistry, 2019, 2019, 1329-1334. | 2.0 | 2         |
| 87 | Racemic Porous Organic Cage Crystal with Selective Gas Adsorption Behaviors. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 0, , .                                                                                                 | 1.2 | 1         |