
Andres de los Santos Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2460608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kill&Repel Coatings: The Marriage of Antifouling and Bactericidal Properties to Mitigate and Treat Wound Infections. Advanced Functional Materials, 2022, 32, 2106656.	14.9	24
2	Complement Activation Dramatically Accelerates Blood Plasma Fouling On Antifouling Poly(2â€hydroxyethyl methacrylate) Brush Surfaces. Macromolecular Bioscience, 2022, 22, e2100460.	4.1	4
3	Grafting density and antifouling properties of poly[<i>N</i> -(2-hydroxypropyl) methacrylamide] brushes prepared by "grafting to―and "grafting from― Polymer Chemistry, 2022, 13, 3815-3826.	3.9	17
4	Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. International Journal of Molecular Sciences, 2020, 21, 6800.	4.1	12
5	Conformation in Ultrathin Polymer Brush Coatings Resolved by Infrared Nanoscopy. Analytical Chemistry, 2020, 92, 4716-4720.	6.5	16
6	"Clickable―and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‧pecific Cell Attachment. Macromolecular Bioscience, 2020, 20, e1900354.	4.1	27
7	Modulation of Living Cell Behavior with Ultraâ€Low Fouling Polymer Brush Interfaces. Macromolecular Bioscience, 2020, 20, e1900351.	4.1	13
8	Turning a Killing Mechanism into an Adhesion and Antifouling Advantage. Advanced Materials Interfaces, 2019, 6, 1900847.	3.7	16
9	Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes. Macromolecular Bioscience, 2018, 18, 1700359.	4.1	53
10	Polymer Brush Collapse under Shear Flow. Macromolecules, 2017, 50, 1215-1224.	4.8	18
11	Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules, 2017, 18, 1983-1992.	5.4	61
12	Catalyst-free "click―functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma. Analytica Chimica Acta, 2017, 971, 78-87.	5.4	27
13	Clickable Antifouling Polymer Brushes for Polymer Pen Lithography. ACS Applied Materials & Interfaces, 2017, 9, 12109-12117.	8.0	33
14	Ultrathin Monomolecular Films and Robust Assemblies Based on Cyclic Catechols. Langmuir, 2017, 33, 670-679.	3.5	9
15	Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP. Polymer Chemistry, 2016, 7, 6934-6945.	3.9	34
16	Catalyst-free site-specific surface modifications of nanocrystalline diamond films via microchannel cantilever spotting. RSC Advances, 2016, 6, 57820-57827.	3.6	14
17	Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties. Biomacromolecules, 2016, 17, 1179-1185.	5.4	68
18	Rapid Thiol‥neâ€Mediated Fabrication and Dual Postfunctionalization of Microâ€Resolved 3D Mesostructures_Advanced Functional Materials_2015_25_3735-3744	14.9	31

ANDRES DE LOS SANTOS

#	Article	IF	CITATIONS
19	Macromol. Rapid Commun. 18/2015. Macromolecular Rapid Communications, 2015, 36, 1696-1696.	3.9	0
20	Surface Grafting via Photoâ€Induced Copperâ€Mediated Radical Polymerization at Extremely Low Catalyst Concentrations. Macromolecular Rapid Communications, 2015, 36, 1681-1686.	3.9	50
21	Phototriggered Functionalization of Hierarchically Structured Polymer Brushes. Langmuir, 2015, 31, 5899-5907.	3.5	43
22	Synthesis of non-fouling poly[N-(2-hydroxypropyl)methacrylamide] brushes by photoinduced SET-LRP. Polymer Chemistry, 2015, 6, 4210-4220.	3.9	59
23	Quantifying bacterial adhesion on antifouling polymer brushes <i>via</i> single-cell force spectroscopy. Polymer Chemistry, 2015, 6, 5740-5751.	3.9	70
24	Use of pooled blood plasmas in the assessment of fouling resistance. RSC Advances, 2014, 4, 2318-2321.	3.6	48
25	Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics, 2014, 55, 278-284.	10.1	67
26	Exploiting end group functionalization for the design of antifouling bioactive brushes. Polymer Chemistry, 2014, 5, 4124-4131.	3.9	51
27	Hierarchical antifouling brushes for biosensing applications. Sensors and Actuators B: Chemical, 2014, 202, 1313-1321.	7.8	44
28	Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosensors and Bioelectronics, 2014, 51, 150-157.	10.1	78
29	Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. Journal of Materials Chemistry B, 2013, 1, 5644.	5.8	69
30	Biomimetic non-fouling surfaces: extending the concepts. Journal of Materials Chemistry B, 2013, 1, 2859.	5.8	76