
## Xingcheng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2460570/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Siliconâ€Based Nanomaterials for Lithium″on Batteries: A Review. Advanced Energy Materials, 2014, 4,<br>1300882.                                                                          | 10.2 | 1,250     |
| 2  | A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.                       | 15.6 | 996       |
| 3  | Siliconâ€Based Anodes for Lithiumâ€lon Batteries: From Fundamentals to Practical Applications. Small, 2018, 14, 1702737.                                                                  | 5.2  | 650       |
| 4  | Polydopamine-Coated, Nitrogen-Doped, Hollow Carbon–Sulfur Double-Layered Core–Shell Structure<br>for Improving Lithium–Sulfur Batteries. Nano Letters, 2014, 14, 5250-5256.               | 4.5  | 361       |
| 5  | Multifunctional TiO <sub>2</sub> –C/MnO <sub>2</sub> Core–Double-Shell Nanowire Arrays as<br>High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 5467-5473. | 4.5  | 338       |
| 6  | Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. Journal of the American<br>Chemical Society, 2013, 135, 12048-12056.                                              | 6.6  | 332       |
| 7  | Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Nano Letters, 2016, 16, 2011-2016.                          | 4.5  | 320       |
| 8  | Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.                                                                                           | 10.2 | 306       |
| 9  | Tailoring Pore Size of Nitrogenâ€Đoped Hollow Carbon Nanospheres for Confining Sulfur in<br>Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1401752.                        | 10.2 | 273       |
| 10 | Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO <sub>2</sub> Nanotube as Anode for<br>Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 1855-1860.     | 2.1  | 271       |
| 11 | In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Lithium Ion Batteries. Nano Letters, 2012, 12, 1624-1632.     | 4.5  | 256       |
| 12 | Revealing Tripleâ€6hape Memory Effect by Polymer Bilayers. Macromolecular Rapid Communications, 2009, 30, 1823-1827.                                                                      | 2.0  | 234       |
| 13 | Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries. Advanced Materials, 2011, 23, 3911-3915.                                                                              | 11.1 | 234       |
| 14 | Improved cycling stability of silicon thin film electrodes through patterning for high energy density<br>lithium batteries. Journal of Power Sources, 2011, 196, 1409-1416.               | 4.0  | 207       |
| 15 | Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion<br>Battery Design. Nano Letters, 2014, 14, 6704-6710.                                  | 4.5  | 172       |
| 16 | Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy, 2015, 15, 746-754.                                     | 8.2  | 164       |
| 17 | Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life<br>lithium-ion batteries. Nature Communications, 2015, 6, 8597.                           | 5.8  | 163       |
| 18 | Materials science and fabrication processes for a new MEMS technology based on<br>ultrananocrystalline diamond thin films. Journal of Physics Condensed Matter, 2004, 16, R539-R552.      | 0.7  | 162       |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Self-healable graphene polymer composites. Journal of Materials Chemistry, 2010, 20, 3508.                                                                                                                   | 6.7  | 154       |
| 20 | Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of<br>Liâ€Ion Battery. Advanced Functional Materials, 2015, 25, 1426-1433.                                    | 7.8  | 149       |
| 21 | Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance<br>lithium-ion battery anodes. Nano Energy, 2016, 19, 187-197.                                                      | 8.2  | 148       |
| 22 | Self-Peeling Reversible Dry Adhesive System. Chemistry of Materials, 2008, 20, 2866-2868.                                                                                                                    | 3.2  | 143       |
| 23 | Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy and Environmental Science, 2017, 10, 1427-1434.                                                          | 15.6 | 140       |
| 24 | Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films.<br>Journal of Applied Physics, 2006, 99, 114301.                                                                | 1.1  | 139       |
| 25 | In vitro andin vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal<br>microchips. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 273-281. | 1.6  | 131       |
| 26 | Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands. Journal of the Electrochemical Society, 2011, 159, A38-A43.                                                                       | 1.3  | 119       |
| 27 | Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction. Journal of Physical Chemistry C, 2012, 116, 1472-1478.                                        | 1.5  | 119       |
| 28 | Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter, 2009, 5, 3689.                                                                                                   | 1.2  | 116       |
| 29 | Encoding Localized Strain History Through Wrinkle Based Structural Colors. Advanced Materials, 2010, 22, 4390-4394.                                                                                          | 11.1 | 116       |
| 30 | Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-lon Batteries. Nano Letters, 2014, 14, 277-283.                                      | 4.5  | 116       |
| 31 | In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes. ACS Energy Letters, 2016, 1, 689-697.                                                   | 8.8  | 116       |
| 32 | Dual phase Li4Ti5O12–TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries.<br>Nano Energy, 2014, 9, 383-391.                                                                        | 8.2  | 114       |
| 33 | In Situ Atomic Force Microscopy Study of Initial Solid Electrolyte Interphase Formation on Silicon<br>Electrodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6672-6686.               | 4.0  | 113       |
| 34 | Vertically aligned graphene electrode for lithium ion battery with high rate capability.<br>Electrochemistry Communications, 2011, 13, 209-212.                                                              | 2.3  | 112       |
| 35 | Thickness effects on the lithiation of amorphous silicon thin films. Scripta Materialia, 2011, 64, 307-310.                                                                                                  | 2.6  | 106       |
| 36 | Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9551-9558.                                 | 4.0  | 101       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report.<br>Electrochimica Acta, 2012, 66, 28-37.                                                             | 2.6  | 100       |
| 38 | Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. Journal of Power Sources, 2012, 206, 357-366.   | 4.0  | 98        |
| 39 | Reduced Graphene Oxide/Tin–Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion<br>Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24895-24901.                                         | 4.0  | 89        |
| 40 | Mn-Doped TiO <sub>2</sub> Nanosheet-Based Spheres as Anode Materials for Lithium-Ion Batteries<br>with High Performance at Elevated Temperatures. ACS Applied Materials & Interfaces, 2014, 6,<br>7292-7300.  | 4.0  | 87        |
| 41 | Control and Optimization of the Electrochemical and Mechanical Properties of the Solid Electrolyte<br>Interphase on Silicon Electrodes in Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502302. | 10.2 | 86        |
| 42 | Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion<br>Batteries. Journal of Physical Chemistry Letters, 2013, 4, 3387-3391.                                      | 2.1  | 84        |
| 43 | Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries. Electrochemistry Communications, 2013, 32, 31-34.                                            | 2.3  | 79        |
| 44 | Thin film graphite electrodes with low stress generation during Li-intercalation. Carbon, 2011, 49, 2742-2749.                                                                                                | 5.4  | 78        |
| 45 | Li Segregation Induces Structure and Strength Changes at the Amorphous Si/Cu Interface. Nano<br>Letters, 2013, 13, 4759-4768.                                                                                 | 4.5  | 75        |
| 46 | Toward High Cycle Efficiency of Siliconâ€Based Negative Electrodes by Designing the Solid Electrolyte<br>Interphase. Advanced Energy Materials, 2015, 5, 1401398.                                             | 10.2 | 72        |
| 47 | Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. Electrochimica Acta, 2013, 87, 844-852.                                                                 | 2.6  | 70        |
| 48 | Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes. Nano Energy, 2020,<br>68, 104257.                                                                                        | 8.2  | 70        |
| 49 | Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology, 2007, 18, 365102.                                          | 1.3  | 69        |
| 50 | Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. Journal of Power Sources, 2012, 212, 66-72.                            | 4.0  | 67        |
| 51 | Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. Electrochimica Acta, 2013, 108, 104-111.                                                        | 2.6  | 66        |
| 52 | Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries. Electrochimica Acta, 2014, 130, 127-134.                                                           | 2.6  | 66        |
| 53 | A Systematic Investigation of Polymer Binder Flexibility on the Electrode Performance of Lithium-Ion<br>Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17111-17118.                                  | 4.0  | 65        |
| 54 | Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes. Journal of the Electrochemical Society, 2012, 159, A1520-A1527.                                                                            | 1.3  | 64        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for<br>Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 13732-13735.                                   | 6.6  | 61        |
| 56 | Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 10398.                                                               | 1.3  | 59        |
| 57 | Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 2011, 13, 796-799.                                                                                           | 2.3  | 58        |
| 58 | Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries.<br>Nano Energy, 2015, 13, 192-199.                                                                                           | 8.2  | 58        |
| 59 | Adhesion analysis and dry machining performance of CVD diamond coatings deposited on surface<br>modified WC–Co turning inserts. Journal of Materials Processing Technology, 2012, 212, 523-533.                                | 3.1  | 57        |
| 60 | Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. Carbon, 2015, 93, 258-265.                                  | 5.4  | 56        |
| 61 | Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. Journal of Power Sources, 2018, 396, 824-830.                                                                       | 4.0  | 54        |
| 62 | Potentiostatic intermittent titration technique (PITT) for spherical particles with finite interfacial kinetics. Electrochimica Acta, 2012, 75, 56-61.                                                                         | 2.6  | 53        |
| 63 | Engineering of Graphene Layer Orientation to Attain High Rate Capability and Anisotropic Properties in<br>Liâ€Ion Battery Electrodes. Advanced Functional Materials, 2013, 23, 2397-2404.                                      | 7.8  | 53        |
| 64 | Design of Nanostructured Heterogeneous Solid Ionic Coatings through a Multiscale Defect Model.<br>ACS Applied Materials & Interfaces, 2016, 8, 5687-5693.                                                                      | 4.0  | 53        |
| 65 | Fast lithium-ion storage of Nb <sub>2</sub> O <sub>5</sub> nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Advances, 2015, 5, 41179-41185.                                 | 1.7  | 51        |
| 66 | Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3962-3967.                            | 5.2  | 51        |
| 67 | Mechanical Property Evolution of Silicon Composite Electrodes Studied by Environmental Nanoindentation. Advanced Energy Materials, 2018, 8, 1702578.                                                                           | 10.2 | 51        |
| 68 | Controlling water contact angle on carbon surfaces from 5° to 167°. Carbon, 2006, 44, 3116-3120.                                                                                                                               | 5.4  | 50        |
| 69 | Asymmetric Rate Behavior of Si Anodes for Lithiumâ€Ion Batteries: Ultrafast Deâ€Lithiation versus<br>Sluggish Lithiation at High Current Densities. Advanced Energy Materials, 2015, 5, 1401627.                               | 10.2 | 50        |
| 70 | Investigation of the Reasons for Capacity Fading in Li-Ion Battery Cells. Journal of the Electrochemical Society, 2014, 161, A1672-A1680.                                                                                      | 1.3  | 49        |
| 71 | Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene<br>Nanosheets: High-Performance Anode Material for Lithium-Ion Battery. ACS Applied Materials &<br>Interfaces, 2014, 6, 13757-13764. | 4.0  | 45        |
| 72 | Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation. Physical Chemistry Chemical Physics, 2016, 18, 3706-3715.                                               | 1.3  | 42        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Viscoelastic Behavior and Force Nature of Thermoâ€Reversible Epoxy Dry Adhesives. Macromolecular<br>Rapid Communications, 2010, 31, 295-299.                                                                                                  | 2.0 | 41        |
| 74 | Experimental and Theoretical Characterization of Electrode Materials that Undergo Large Volume<br>Changes and Application to the Lithium–Silicon System. Journal of Physical Chemistry C, 2015, 119,<br>5341-5349.                            | 1.5 | 39        |
| 75 | Coating thickness and interlayer effects on CVD-diamond film adhesion to cobalt-cemented tungsten carbides. Surface and Coatings Technology, 2013, 215, 272-279.                                                                              | 2.2 | 37        |
| 76 | Stress evolution in lithium metal electrodes. Energy Storage Materials, 2020, 24, 281-290.                                                                                                                                                    | 9.5 | 37        |
| 77 | Decoration of Graphitic Surfaces with Sn Nanoparticles through Surface Functionalization Using<br>Diazonium Chemistry. Langmuir, 2012, 28, 13042-13050.                                                                                       | 1.6 | 35        |
| 78 | Multifunctional Lithium-Ion-Exchanged Zeolite-Coated Separator for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 7237-7243.                                                                                                   | 2.5 | 35        |
| 79 | Internal Microstructural Changes and Stress Evolution in Silicon Nanoparticle Based Composite Electrodes. Journal of the Electrochemical Society, 2017, 164, A3750-A3765.                                                                     | 1.3 | 34        |
| 80 | Thermodynamic Model for Substitutional Materials: Application to Lithiated Graphite, Spinel<br>Manganese Oxide, Iron Phosphate, and Layered Nickel-Manganese-Cobalt Oxide. Journal of the<br>Electrochemical Society, 2017, 164, E3243-E3253. | 1.3 | 33        |
| 81 | Condensed water on superhydrophobic carbon films. Journal of Materials Research, 2008, 23, 2174-2178.                                                                                                                                         | 1.2 | 32        |
| 82 | The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond and Related Materials, 2009, 18, 1114-1117.                                                      | 1.8 | 32        |
| 83 | Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power<br>Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1264-1269.                                                                              | 1.7 | 31        |
| 84 | Strain-Induced Lithium Losses in the Solid Electrolyte Interphase on Silicon Electrodes. ACS Applied<br>Materials & Interfaces, 2017, 9, 28406-28417.                                                                                         | 4.0 | 31        |
| 85 | Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films. Journal of Applied Physics, 2007, 102, .                                                                                                          | 1.1 | 30        |
| 86 | Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion. Journal of Biomedical<br>Materials Research - Part A, 2010, 95A, 129-136.                                                                                       | 2.1 | 30        |
| 87 | Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes. Nano Energy, 2016, 22, 202-210.                                                                                                                           | 8.2 | 30        |
| 88 | A Bottom-Up Formation Mechanism of Solid Electrolyte Interphase Revealed by Isotope-Assisted<br>Time-of-Flight Secondary Ion Mass Spectrometry. Journal of Physical Chemistry Letters, 2018, 9,<br>5508-5514.                                 | 2.1 | 29        |
| 89 | Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode. Electrochimica Acta, 2019, 309, 157-165.                                                                   | 2.6 | 29        |
| 90 | Self-Supported Single Crystalline H <sub>2</sub> Ti <sub>8</sub> O <sub>17</sub> Nanoarrays as<br>Integrated Three-Dimensional Anodes for Lithium-Ion Microbatteries. ACS Applied Materials &<br>Interfaces, 2014, 6, 568-574.                | 4.0 | 26        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries. Journal of Power Sources, 2018, 407, 84-91.                                                                                    | 4.0  | 24        |
| 92  | An Investigation of Chemoâ€Mechanical Phenomena and Li Metal Penetration in Allâ€Solidâ€State Lithium<br>Metal Batteries Using In Situ Optical Curvature Measurements. Advanced Energy Materials, 2022, 12, . | 10.2 | 24        |
| 93  | An approach to characterize and clarify hysteresis phenomena of lithium-silicon electrodes. Journal of Applied Physics, 2017, 122, .                                                                          | 1.1  | 23        |
| 94  | Application of WSe <sub>2</sub> Nanoparticles Synthesized by Chemical Vapor Condensation Method for Li-lon Battery Anodes. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1429-1437.                        | 1.4  | 22        |
| 95  | Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation. Applied Physics Letters, 2019, 115, .                                                               | 1.5  | 22        |
| 96  | Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium<br>Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20603-20612.                               | 4.0  | 21        |
| 97  | The Bonding Nature and Adhesion of Polyacrylic Acid Coating on Li-Metal for Li Dendrite Prevention.<br>ACS Applied Materials & Interfaces, 2020, 12, 51007-51015.                                             | 4.0  | 21        |
| 98  | Dendrite-free Lithium Based on Lessons Learned from Lithium and Magnesium Electrodeposition Morphology Simulations. Cell Reports Physical Science, 2021, 2, 100294.                                           | 2.8  | 19        |
| 99  | Phase-separated silicon–tin nanocomposites for high capacity negative electrodes in lithium ion batteries. Journal of Power Sources, 2012, 214, 258-265.                                                      | 4.0  | 18        |
| 100 | A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition. Applied Physics Letters, 2014, 105, .                                                | 1.5  | 16        |
| 101 | Pop-Up Delamination of Electrodes in Solid-State Batteries. Journal of the Electrochemical Society, 2018, 165, A618-A625.                                                                                     | 1.3  | 12        |
| 102 | Synthesis of Nanoporous Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> –TiO <sub>2</sub> Composites<br>for Highâ€Performance Lithiumâ€Ionâ€Battery Anodes. ChemElectroChem, 2016, 3, 1951-1959.              | 1.7  | 11        |
| 103 | Structure and mechanical properties of electroplated mossy lithium: Effects of current density and electrolyte. Energy Storage Materials, 2020, 26, 276-282.                                                  | 9.5  | 11        |
| 104 | Material transfer during machining of aluminum alloys with polycrystalline diamond cutting tools.<br>Journal of Materials Processing Technology, 2009, 209, 5760-5765.                                        | 3.1  | 10        |
| 105 | Fabrication and Characterization of Lithium-Silicon Thick-Film Electrodes for High-Energy-Density<br>Batteries. Journal of the Electrochemical Society, 2017, 164, A156-A167.                                 | 1.3  | 10        |
| 106 | Laser Joining of Carbon-Fiber-Reinforced Polymer and Metal with High-Strength and Corrosion-Resistant Bonds. Procedia Manufacturing, 2019, 34, 42-48.                                                         | 1.9  | 9         |
| 107 | The importance of covalent coupling in the synthesis of high performance composite anodes for lithium ion batteries. RSC Advances, 2016, 6, 45519-45524.                                                      | 1.7  | 8         |
| 108 | Mechanical and Electronic Stabilization of Solid Electrolyte Interphase with Sulfite Additive for<br>Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A3201-A3206.                 | 1.3  | 8         |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films. Journal of Applied Physics, 2007, 101, 123924.                                                                                   | 1.1 | 6         |
| 110 | Novel Ultrananocrystalline Diamond Probes for High-Resolution Low-Wear Nanolithographic Techniques. Small, 2005, 1, 912-912.                                                                                                             | 5.2 | 4         |
| 111 | Enhanced Rate Capability of Oxide Coated Lithium Titanate within Extended Voltage Ranges. Frontiers in Energy Research, 2015, 3, .                                                                                                       | 1.2 | 4         |
| 112 | Surface Treatments for Controlling Solid Electrolyte Interphase Formation on Sn/Graphene<br>Composite Anodes for High-Performance Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121,<br>16682-16692.                          | 1.5 | 4         |
| 113 | Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. Journal of Power Sources, 2018, 399, 98-104.                                                                             | 4.0 | 4         |
| 114 | Reinforced Composite Film on Lithium Metal Electrodes through Aryl Chlorosilane Treatment.<br>Langmuir, 2019, 35, 16459-16465.                                                                                                           | 1.6 | 3         |
| 115 | Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction.<br>ACS Applied Materials & Interfaces, 2019, 11, 44204-44213.                                                                       | 4.0 | 3         |
| 116 | Lithiated Zeolite as Additives for Lowâ€Cost Positive Electrode. Advanced Materials Technologies, 2021,<br>6, 2100615.                                                                                                                   | 3.0 | 3         |
| 117 | A Power-Law Decrease in Interfacial Resistance Between<br>Li <sub>7</sub> La <sub>3</sub> Zr <sub>2</sub> O <sub>12</sub> and Lithium Metal After Removing Stack<br>Pressure. Journal of the Electrochemical Society, 2021, 168, 100522. | 1.3 | 3         |
| 118 | Observation of the surface layer of lithium metal using <i>in situ</i> spectroscopy. Applied Physics<br>Letters, 2022, 120, .                                                                                                            | 1.5 | 2         |
| 119 | Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power<br>Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1210-1210.                                                                         | 1.7 | 0         |