List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2460034/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases.<br>Advanced Materials, 2018, 30, e1801362.                                                            | 21.0 | 415       |
| 2  | Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews, 2016, 116, 835-877.                                                                          | 47.7 | 373       |
| 3  | "Clicking―on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chemical Society Reviews, 2012, 41, 176-191.                          | 38.1 | 332       |
| 4  | Coordination-Driven Multistep Assembly of Metal–Polyphenol Films and Capsules. Chemistry of<br>Materials, 2014, 26, 1645-1653.                                                                         | 6.7  | 303       |
| 5  | Poly(2â€ethylâ€2â€oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in<br>vitro Cytotoxicity and Hemocompatibility. Macromolecular Bioscience, 2012, 12, 986-998. | 4.1  | 243       |
| 6  | Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of<br>Materials, 2015, 27, 5825-5832.                                                                       | 6.7  | 177       |
| 7  | Emerging methods for the fabrication of polymer capsules. Advances in Colloid and Interface Science, 2014, 207, 14-31.                                                                                 | 14.7 | 172       |
| 8  | Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules, 2011, 44, 5825-5842.                                                                                        | 4.8  | 151       |
| 9  | Metal–Phenolic Supramolecular Gelation. Angewandte Chemie - International Edition, 2016, 55,<br>13803-13807.                                                                                           | 13.8 | 147       |
| 10 | Poly(2-oxazoline) functionalized surfaces: from modification to application. Chemical Society Reviews, 2013, 42, 7998.                                                                                 | 38.1 | 128       |
| 11 | Monoclonal Antibody-Functionalized Multilayered Particles: Targeting Cancer Cells in the Presence of Protein Coronas. ACS Nano, 2015, 9, 2876-2885.                                                    | 14.6 | 99        |
| 12 | Photoinduced Synthesis of α,ï‰-Telechelic Sequence-Controlled Multiblock Copolymers.<br>Macromolecules, 2015, 48, 1404-1411.                                                                           | 4.8  | 97        |
| 13 | Three-Fold Metal-Free Efficient ("Clickâ€) Reactions onto a Multifunctional Poly(2-oxazoline) Designer<br>Scaffold. Macromolecules, 2011, 44, 6424-6432.                                               | 4.8  | 94        |
| 14 | Poly(2-oxazoline)-based micro- and nanoparticles: A review. European Polymer Journal, 2017, 88,<br>486-515.                                                                                            | 5.4  | 91        |
| 15 | Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment. Biomacromolecules, 2013, 14, 2724-2732.                                                                                              | 5.4  | 86        |
| 16 | Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled<br>Self-Assembly. Journal of the American Chemical Society, 2015, 137, 9344-9353.                          | 13.7 | 84        |
| 17 | Poly(2â€oxazoline) Hydrogel Monoliths via Thiolâ€ene Coupling. Macromolecular Rapid Communications,<br>2012, 33, 1695-1700.                                                                            | 3.9  | 75        |
| 18 | Multifunctional Thrombinâ€Activatable Polymer Capsules for Specific Targeting to Activated Platelets.<br>Advanced Materials, 2015, 27, 5153-5157.                                                      | 21.0 | 73        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation.<br>Journal of the American Chemical Society, 2015, 137, 4215-4222.                                            | 13.7 | 71        |
| 20 | Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polymer Chemistry, 2011, 2, 1737.                                                                                                                      | 3.9  | 70        |
| 21 | Photo-induced living radical polymerization of acrylates utilizing a discrete<br>copper( <scp>ii</scp> )–formate complex. Chemical Communications, 2015, 51, 5626-5629.                                            | 4.1  | 70        |
| 22 | Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. Journal of Materials Chemistry B, 2015, 3, 526-538.                   | 5.8  | 68        |
| 23 | Multifunctional Poly(2â€oxazoline) Nanoparticles for Biological Applications. Macromolecular Rapid<br>Communications, 2010, 31, 1869-1873.                                                                         | 3.9  | 67        |
| 24 | <i>In vitro</i> hemocompatibility and cytotoxicity study of poly(2â€methylâ€2â€oxazoline) for biomedical applications. Journal of Polymer Science Part A, 2013, 51, 1816-1821.                                     | 2.3  | 67        |
| 25 | Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. Journal of Materials Chemistry B, 2014, 2, 4883-4893.                                               | 5.8  | 63        |
| 26 | Synthesis and characterization of a series of diverse poly(2â€oxazoline)s. Journal of Polymer Science<br>Part A, 2009, 47, 3829-3838.                                                                              | 2.3  | 62        |
| 27 | 2-Isopropenyl-2-oxazoline: A Versatile Monomer for Functionalization of Polymers Obtained via RAFT.<br>Macromolecules, 2012, 45, 20-27.                                                                            | 4.8  | 61        |
| 28 | Screening the Synthesis of 2-Substituted-2-oxazolines. ACS Combinatorial Science, 2009, 11, 274-280.                                                                                                               | 3.3  | 57        |
| 29 | Immersive Polymer Assembly on Immobilized Particles for Automated Capsule Preparation. Advanced Materials, 2013, 25, 6874-6878.                                                                                    | 21.0 | 56        |
| 30 | Synthesis of well-defined α,ω-telechelic multiblock copolymers in aqueous medium: in situ generation of<br>α,ω-diols. Polymer Chemistry, 2015, 6, 2226-2233.                                                       | 3.9  | 54        |
| 31 | Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles.<br>Polymer Chemistry, 2016, 7, 7002-7010.                                                                     | 3.9  | 54        |
| 32 | Advances and Opportunities of Oil-in-Oil Emulsions. ACS Applied Materials & Interfaces, 2020, 12, 38845-38861.                                                                                                     | 8.0  | 53        |
| 33 | Rational Design of an Amorphous Poly(2-oxazoline) with a Low Glass-Transition Temperature:<br>Monomer Synthesis, Copolymerization, and Properties. Macromolecules, 2010, 43, 4098-4104.                            | 4.8  | 52        |
| 34 | A Green Approach for the Synthesis and Thiolâ€ene Modification of Alkene Functio1489lized<br>Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2011, 32, 1484-1489.                                        | 3.9  | 51        |
| 35 | A Hydrogelâ€Based Localized Release of Colistin for Antimicrobial Treatment of Burn Wound Infection.<br>Macromolecular Bioscience, 2017, 17, 1600320.                                                              | 4.1  | 51        |
| 36 | In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser<br>Scanning Microscopy Combined with Microfluidics. ACS Applied Materials & Interfaces, 2019, 11,<br>2459-2469. | 8.0  | 51        |

KRISTIAN KEMPE

| #  | Article                                                                                                                                                                                        | IF       | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 37 | Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media.<br>Macromolecules, 2015, 48, 5517-5525.                                                      | 4.8      | 50           |
| 38 | Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media.<br>Macromolecules, 2015, 48, 6421-6432.                                                      | 4.8      | 49           |
| 39 | Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived<br>Macrophages. Biomacromolecules, 2016, 17, 1205-1212.                                         | 5.4      | 49           |
| 40 | Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding.<br>Biomacromolecules, 2011, 12, 2591-2600.                                                             | 5.4      | 48           |
| 41 | Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter, 2013, 9, 4693.                                                                                                   | 2.7      | 48           |
| 42 | In Situ Conjugation of Dithiophenol Maleimide Polymers and Oxytocin for Stable and Reversible<br>Polymer–Peptide Conjugates. Bioconjugate Chemistry, 2015, 26, 633-638.                        | 3.6      | 47           |
| 43 | Intracellularly Degradable Hydrogenâ€Bonded Polymer Capsules. Advanced Functional Materials, 2014,<br>24, 6187-6194.                                                                           | 14.9     | 46           |
| 44 | Clickable Poly(2-oxazoline) Architectures for the Fabrication of Low-Fouling Polymer Capsules. ACS<br>Macro Letters, 2013, 2, 1069-1072.                                                       | 4.8      | 45           |
| 45 | Linear Polyethyleneimine: Optimized Synthesis and Characterization – On the Way to "Pharmagrade―<br>Batches. Macromolecular Chemistry and Physics, 2011, 212, 1918-1924.                       | 2.2      | 44           |
| 46 | Discovering new block terpolymer micellar morphologies. Chemical Communications, 2010, 46, 6455.                                                                                               | 4.1      | 42           |
| 47 | Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline). Nanoscale, 2018, 10, 10863-10875.            | 5.6      | 42           |
| 48 | Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2â€oxazoline)s to Poly(ester) Tj ETQq(                                                                                 | 0.0 rgBT | /Oyerlock 10 |
| 49 | Well-Defined PDMAEA Stars via Cu(0)-Mediated Reversible Deactivation Radical Polymerization.<br>Macromolecules, 2016, 49, 8914-8924.                                                           | 4.8      | 39           |
| 50 | Cobalt-Directed Assembly of Antibodies onto Metal–Phenolic Networks for Enhanced Particle<br>Targeting. Nano Letters, 2020, 20, 2660-2666.                                                     | 9.1      | 39           |
| 51 | Zwitterionic poly(2-oxazoline)s as promising candidates for blood contacting applications. Polymer<br>Chemistry, 2014, 5, 5751-5764.                                                           | 3.9      | 37           |
| 52 | Importance of Thermally Induced Aggregation on <sup>19</sup> F Magnetic Resonance Imaging of<br>Perfluoropolyether-Based Comb-Shaped Poly(2-oxazoline)s. Biomacromolecules, 2019, 20, 365-374. | 5.4      | 36           |
| 53 | Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers:<br>Toward Enhanced Monodispersity and Stability. Nano Letters, 2021, 21, 476-484.                | 9.1      | 36           |
| 54 | A Cationic Poly(2â€oxazoline) with High In Vitro Transfection Efficiency Identified by a Library Approach.<br>Macromolecular Bioscience, 2015, 15, 414-425.                                    | 4.1      | 35           |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal–Phenolic<br>Network Films. Biomacromolecules, 2019, 20, 1421-1428.                                            | 5.4  | 35        |
| 56 | Stealth nanorods <i>via</i> the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s. Chemical Science, 2021, 12, 7350-7360.                                                     | 7.4  | 35        |
| 57 | Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target<br>Mitochondria. ACS Applied Materials & Interfaces, 2019, 11, 31302-31310.                                     | 8.0  | 34        |
| 58 | Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal, 2019, 121, 109258.                                               | 5.4  | 34        |
| 59 | Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt–tannic acid<br>networks. Nanoscale, 2019, 11, 1921-1928.                                                        | 5.6  | 34        |
| 60 | Dual Stimuli-Responsive Comb Polymers from Modular <i>N</i> -Acylated Poly(aminoester)-Based<br>Macromonomers. ACS Macro Letters, 2016, 5, 321-325.                                                   | 4.8  | 32        |
| 61 | Specific and Differential Binding of <i>N</i> -Acetylgalactosamine Glycopolymers to the Human<br>Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18, 1624-1633. | 5.4  | 32        |
| 62 | Characterization of different poly(2â€oxazoline) block copolymers by MALDIâ€TOF MS/MS and ESIâ€Qâ€TOF<br>MS/MS. Journal of Polymer Science Part A, 2010, 48, 5533-5540.                               | 2.3  | 31        |
| 63 | Self-assembly of chiral block and gradient copolymers. Soft Matter, 2012, 8, 165-172.                                                                                                                 | 2.7  | 31        |
| 64 | Parallel High-Throughput Screening of Polymer Vectors for Nonviral Gene Delivery: Evaluation of<br>Structure–Property Relationships of Transfection. ACS Combinatorial Science, 2013, 15, 475-482.    | 3.8  | 31        |
| 65 | Matrix Supported Poly(2-oxazoline)-Based Hydrogels for DNA Catch and Release. Biomacromolecules, 2014, 15, 1970-1978.                                                                                 | 5.4  | 31        |
| 66 | Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics. Langmuir, 2015, 31, 7776-7781.                                                                                                    | 3.5  | 31        |
| 67 | Microfluidic Examination of the "Hard―Biomolecular Corona Formed on Engineered Particles in<br>Different Biological Milieu. Biomacromolecules, 2018, 19, 2580-2594.                                   | 5.4  | 31        |
| 68 | One-pot synthesis of cyclopentadienyl endcapped poly(2-ethyl-2-oxazoline) and subsequent ambient<br>temperature Diels–Alder conjugations. Chemical Communications, 2011, 47, 10620.                   | 4.1  | 30        |
| 69 | Characterization of poly(2-oxazoline) homo- and copolymers by liquid chromatography at critical conditions. Journal of Chromatography A, 2011, 1218, 8370-8378.                                       | 3.7  | 30        |
| 70 | Multilayered polymer capsules with switchable permeability. Polymer, 2014, 55, 6451-6459.                                                                                                             | 3.8  | 29        |
| 71 | Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy.<br>Carbohydrate Polymers, 2014, 113, 597-606.                                                       | 10.2 | 29        |
| 72 | Linear Poly(ethylene imine)-Based Hydrogels for Effective Binding and Release of DNA.<br>Biomacromolecules, 2014, 15, 1124-1131.                                                                      | 5.4  | 29        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Controlled aqueous polymerization of acrylamides and acrylates and "in situ―depolymerization in the presence of dissolved CO <sub>2</sub> . Chemical Communications, 2016, 52, 6533-6536.                                | 4.1  | 29        |
| 74 | pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade "double-click―<br>reaction. Polymer Chemistry, 2013, 4, 3236.                                                                       | 3.9  | 28        |
| 75 | Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrixâ€assisted laser desorption/ionization (MALDI). Journal of Mass Spectrometry, 2012, 47, 105-114.                            | 1.6  | 27        |
| 76 | Metal–Phenolic Supramolecular Gelation. Angewandte Chemie, 2016, 128, 14007-14011.                                                                                                                                       | 2.0  | 27        |
| 77 | Design of new amphiphilic triblock copoly(2â€oxazoline)s containing a fluorinated segment. Journal of<br>Polymer Science Part A, 2010, 48, 5100-5108.                                                                    | 2.3  | 26        |
| 78 | Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials, 2021, 274, 120843.                                                                      | 11.4 | 26        |
| 79 | Novel comb polymers from alternating N-acylated poly(aminoester)s obtained by spontaneous zwitterionic copolymerisation. Chemical Communications, 2015, 51, 16213-16216.                                                 | 4.1  | 25        |
| 80 | Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Letters, 2013, 2,<br>677-682.                                                                                                             | 4.8  | 25        |
| 81 | Tuning the morphology of triblock terpoly(2-oxazoline)s containing a 2-phenyl-2-oxazoline block with varying fluorine content. Soft Matter, 2013, 9, 5966.                                                               | 2.7  | 24        |
| 82 | Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl<br>phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polymer Chemistry,<br>2016, 7, 2452-2456. | 3.9  | 23        |
| 83 | Revisiting cell–particle association in vitro: A quantitative method to compare particle performance.<br>Journal of Controlled Release, 2019, 307, 355-367.                                                              | 9.9  | 23        |
| 84 | Functional Brush Poly(2â€ethylâ€2â€oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and<br>Grafting onto Iron Oxide Nanoparticles. Macromolecular Rapid Communications, 2019, 40, e1800911.                   | 3.9  | 23        |
| 85 | Core cross-linked nanogels based on the self-assembly of double hydrophilic poly(2-oxazoline) block<br>copolymers. Journal of Materials Chemistry B, 2015, 3, 1748-1759.                                                 | 5.8  | 22        |
| 86 | Comb Poly(Oligo(2â€Ethylâ€2â€Oxazoline)Methacrylate)â€Peptide Conjugates Prepared by Aqueous<br>Cu(0)â€Mediated Polymerization and Reductive Amination. Macromolecular Rapid Communications, 2017,<br>38, 1600534.       | 3.9  | 22        |
| 87 | Enhancing the Biocompatibility and Biodegradability of Linear Poly(ethylene imine) through<br>Controlled Oxidation. Macromolecules, 2015, 48, 7420-7427.                                                                 | 4.8  | 21        |
| 88 | Preparation of nonâ€spherical particles from amphiphilic block copolymers. Journal of Polymer Science<br>Part A, 2016, 54, 750-757.                                                                                      | 2.3  | 21        |
| 89 | Self-Assembling Protein–Polymer Bioconjugates for Surfaces with Antifouling Features and Low<br>Nonspecific Binding. ACS Applied Materials & Interfaces, 2019, 11, 3599-3608.                                            | 8.0  | 21        |
| 90 | Sideâ€Chain Modification and "Grafting Onto―via Olefin Crossâ€Metathesis. Macromolecular Rapid<br>Communications, 2012, 33, 2023-2028.                                                                                   | 3.9  | 20        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. Polymer, 2013, 54, 2036-2042.     | 3.8  | 20        |
| 92  | Templated polymerizations on solid supports mediated by complementary nucleoside interactions.<br>Polymer Chemistry, 2015, 6, 1944-1951.                                                               | 3.9  | 20        |
| 93  | A strong cationic BrÃ,nsted acid, [H(OEt2)2][Al{OC(CF3)3}4], as an efficient initiator for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines. Polymer Chemistry, 2013, 4, 495-505.      | 3.9  | 19        |
| 94  | Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Advances, 2015, 5, 5879-5885.                                                                      | 3.6  | 18        |
| 95  | Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of<br>Biodistribution. Biomacromolecules, 2020, 21, 3318-3331.                                             | 5.4  | 18        |
| 96  | Stabilization of factor VIII by poly(2â€oxazoline) hydrogels. Journal of Polymer Science Part A, 2015, 53, 10-14.                                                                                      | 2.3  | 17        |
| 97  | Spontaneous zwitterionic copolymerisation: An undervalued and efficacious technique for the synthesis of functional degradable oligomers and polymers. Progress in Polymer Science, 2018, 87, 228-246. | 24.7 | 17        |
| 98  | Nextâ€Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions.<br>Macromolecular Rapid Communications, 2020, 41, e2000319.                                                 | 3.9  | 17        |
| 99  | Dynamic Solid-State Ultrasound Contrast Agent for Monitoring pH Fluctuations In Vivo. ACS Sensors, 2020, 5, 1190-1197.                                                                                 | 7.8  | 17        |
| 100 | Tumor targeting with pH-responsive poly(2-oxazoline)-based nanogels for metronomic doxorubicin treatment. Oncotarget, 2018, 9, 22316-22331.                                                            | 1.8  | 17        |
| 101 | Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity. Biomacromolecules, 2022, 23, 2374-2387.                                     | 5.4  | 17        |
| 102 | ESIâ€MS & MS/MS Analysis of Poly(2â€oxazoline)s with Different Side Groups. Macromolecular<br>Chemistry and Physics, 2010, 211, 2312-2322.                                                             | 2.2  | 16        |
| 103 | Comparison of ESI, APCI and MALDI for the (tandem) mass analysis of poly(2-ethyl-2-oxazoline)s with various end-groups. European Polymer Journal, 2013, 49, 2172-2185.                                 | 5.4  | 16        |
| 104 | Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via<br>Sequential Thiol Exchange Reactions. ACS Macro Letters, 2016, 5, 709-713.                           | 4.8  | 16        |
| 105 | Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal, 2021, 151, 110447.                                               | 5.4  | 16        |
| 106 | Toward the design of LPEI containing block copolymers: Improved synthesis protocol, selective hydrolysis, and detailed characterization. Journal of Polymer Science Part A, 2012, 50, 4516-4523.       | 2.3  | 15        |
| 107 | A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria. Journal of Controlled Release, 2017, 259, 83-91.                                         | 9.9  | 15        |
| 108 | Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting<br>Cells. ACS Applied Materials & Interfaces, 2017, 9, 6444-6452.                                      | 8.0  | 15        |

| #   | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Water soluble triblock and pentablock poly(methacryloyl nucleosides) from copper-mediated living radical polymerisation using PEG macroinitiators. European Polymer Journal, 2015, 66, 444-451.                                                                                    | 5.4 | 14        |
| 110 | Facile one-pot/one-step synthesis of heterotelechelic N-acylated poly(aminoester) macromonomers for carboxylic acid decorated comb polymers. Polymer Chemistry, 2016, 7, 6703-6707.                                                                                                | 3.9 | 14        |
| 111 | Tailoring Cellular Uptake and Fluorescence of Poly(2-oxazoline)-Based Nanogels. Bioconjugate<br>Chemistry, 2017, 28, 1229-1235.                                                                                                                                                    | 3.6 | 14        |
| 112 | Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal<br>Reactivity. Polymer Chemistry, 2020, 11, 5681-5692.                                                                                                                            | 3.9 | 14        |
| 113 | Tuning Cellular Interactions of Carboxylic Acid-Side-Chain-Containing Polyacrylates: The Role of<br>Cyanine Dye Label and Side-Chain Type. Biomacromolecules, 2020, 21, 3007-3016.                                                                                                 | 5.4 | 14        |
| 114 | Analysis of different synthetic homopolymers by the use of a new calculation software for tandem mass spectra. Rapid Communications in Mass Spectrometry, 2011, 25, 1765-1778.                                                                                                     | 1.5 | 13        |
| 115 | Starâ€Shaped Block Copolymers by Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition for Potential Drug<br>Delivery Applications. Macromolecular Chemistry and Physics, 2012, 213, 2146-2156.                                                                                            | 2.2 | 13        |
| 116 | Stability Enhancing <i>N</i> -Terminal PEGylation of Oxytocin Exploiting Different Polymer<br>Architectures and Conjugation Approaches. Biomacromolecules, 2016, 17, 2755-2766.                                                                                                    | 5.4 | 13        |
| 117 | A Guideline for the Synthesis of Aminoâ€Acidâ€Functionalized Monomers and Their Polymerizations.<br>Macromolecular Rapid Communications, 2022, 43, e2100615.                                                                                                                       | 3.9 | 13        |
| 118 | Synthesis and <i>in vitro</i> activity of platinum containing 2-oxazoline-based glycopolymers. Journal of Polymer Science Part A, 2014, 52, 2703-2714.                                                                                                                             | 2.3 | 12        |
| 119 | High T g poly(ester amide)s by melt polycondensation of monomers from renewable resources; citric<br>acid, D-glucono-Î-lactone and amino acids: A DSC study. European Polymer Journal, 2017, 94, 11-19.                                                                            | 5.4 | 12        |
| 120 | Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer<br>Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules, 2022,<br>55, 3650-3660.                                                              | 4.8 | 12        |
| 121 | Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]–Colistin Prodrugs through<br>Copper-Mediated Photoinduced Living Radical Polymerization. Bioconjugate Chemistry, 2017, 28,<br>1916-1924.                                                                            | 3.6 | 11        |
| 122 | Unraveling the Spontaneous Zwitterionic Copolymerization Mechanism of Cyclic Imino Ethers and Acrylic Acid. Macromolecules, 2018, 51, 318-327.                                                                                                                                     | 4.8 | 11        |
| 123 | Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 112-121. | 4.3 | 11        |
| 124 | An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform. Journal of Materials Chemistry B, 2019, 7, 6796-6809.                                                                   | 5.8 | 11        |
| 125 | Functional hydrophobic and hetero-grafted block comb polymers <i>via</i> a combination of spontaneous zwitterionic copolymerisation and redox-initiated RAFT polymerisation. Polymer Chemistry, 2018, 9, 1562-1566.                                                                | 3.9 | 10        |
| 126 | Nitrile-Functionalized Poly(2-oxazoline)s as a Versatile Platform for the Development of Polymer<br>Therapeutics. Biomacromolecules, 2021, 22, 4618-4632.                                                                                                                          | 5.4 | 10        |

KRISTIAN KEMPE

| #   | Article                                                                                                                                                                                                                  | IF                 | CITATIONS                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 127 | Facile carbohydrate-mimetic modifications of poly(ethylene imine) carriers for gene delivery applications. Polymer Chemistry, 2016, 7, 5862-5872.                                                                        | 3.9                | 9                           |
| 128 | Thiol-reactive (co)polymer scaffolds comprising organic arsenical acrylamides. Chemical Communications, 2017, 53, 8447-8450.                                                                                             | 4.1                | 9                           |
| 129 | Nonionic Water-Soluble and Cytocompatible Poly(amide acrylate)s. Macromolecules, 2020, 53, 693-701.                                                                                                                      | 4.8                | 9                           |
| 130 | Zinc Thiolate Complexes [ZnLn(SR)]+ with Azamacrocyclic Ligands, Part II: Mechanism of the Reaction with CS2. European Journal of Inorganic Chemistry, 2006, 2006, 2783-2791.                                            | 2.0                | 8                           |
| 131 | Tuning Particle Biodegradation through Polymer–Peptide Blend Composition. Biomacromolecules, 2014, 15, 4429-4438.                                                                                                        | 5.4                | 8                           |
| 132 | Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and<br>Interface Science, 2022, 623, 1142-1150.                                                                       | 9.4                | 8                           |
| 133 | Molar mass, chemical-composition, and functionality-type distributions of poly(2-oxazoline)s revealed by a variety of separation techniques. Journal of Chromatography A, 2012, 1265, 123-132.                           | 3.7                | 7                           |
| 134 | Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td (r<br>2784-2792.                                                                                               | nethacrylat<br>5.4 | e)/Poly( <i>N&lt;<br/>7</i> |
| 135 | Polyurea microcapsules from isocyanatoethyl methacrylate copolymers. Journal of Polymer Science<br>Part A, 2016, 54, 2698-2705.                                                                                          | 2.3                | 7                           |
| 136 | Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr( <scp>iv</scp> ) chelation mediated nanostructures. Polymer Chemistry, 2020, 11, 2799-2810.                          | 3.9                | 7                           |
| 137 | Using <scp>2â€isopropyl</scp> â€2â€oxazine to explore the effect of monomer distribution and polymer<br>architecture on the thermoresponsive behavior of copolymers. Journal of Polymer Science, 2021, 59,<br>2783-2796. | 3.8                | 7                           |
| 138 | A sequential native chemical ligation – thiol-Michael addition strategy for polymer–polymer ligation.<br>Polymer Chemistry, 2019, 10, 5242-5250.                                                                         | 3.9                | 6                           |
| 139 | Intrinsic Green Fluorescent Cross-Linked Poly(ester amide)s by Spontaneous Zwitterionic<br>Copolymerization. Biomacromolecules, 2021, 22, 4794-4804.                                                                     | 5.4                | 6                           |
| 140 | Unprecedented Control over the Acrylate and Acrylamide Polymerization in Aqueous and Organic<br>Media. ACS Symposium Series, 2015, , 29-45.                                                                              | 0.5                | 3                           |
| 141 | Thermal study of polyester networks based on renewable monomers citric acid and gluconolactone.<br>Polymer International, 2017, 66, 59-63.                                                                               | 3.1                | 3                           |
| 142 | Semi-automated multi-dimensional characterization of synthetic copolymers. European Polymer<br>Journal, 2014, 60, 153-162.                                                                                               | 5.4                | 2                           |
| 143 | Diethyl 2,2′-(ethylenediimino)di(cyclopentenecarboxylate). Acta Crystallographica Section E: Structure<br>Reports Online, 2007, 63, o4095-o4095                                                                          | 0.2                | 0                           |
| 144 | The Evolving Landscape of Polymer Science and Engineering in Australia. Macromolecular Rapid Communications, 2020, 41, e2000414.                                                                                         | 3.9                | 0                           |

| #   | Article                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Ultrasound-Responsive Nanoparticles for Continuous pH Sensing In Vivo. ECS Meeting Abstracts, 2020,<br>MA2020-02, 3426-3426. | 0.0 | 0         |