Yao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245923/publications.pdf

Version: 2024-02-01

		218677	214800
50	2,319	26	47
papers	citations	h-index	g-index
50	50	50	3291
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Quest for Stable Potassiumâ€lon Battery Chemistry. Advanced Materials, 2022, 34, e2106876.	21.0	41
2	Machine Learning Assisted Simultaneous Structural Profiling of Differently Charged Proteins in a <i>Mycobacterium smegmatis</i> Porin A (MspA) Electroosmotic Trap. Journal of the American Chemical Society, 2022, 144, 757-768.	13.7	30
3	Identification of Single-Molecule Catecholamine Enantiomers Using a Programmable Nanopore. ACS Nano, 2022, 16, 6615-6624.	14.6	24
4	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	3.6	8
5	Recent Progress in Polyanionic Anode Materials for Li (Na)-lon Batteries. Electrochemical Energy Reviews, 2021, 4, 447-472.	25.5	96
6	Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using Mycobacterium smegmatis porin A. Nature Communications, 2021, 12, 3368.	12.8	42
7	Allâ€Climate Ironâ€Based Sodium″on Full Cell for Energy Storage. Advanced Functional Materials, 2021, 31, 2102856.	14.9	24
8	Single Molecule Ratcheting Motion of Peptides in a <i>Mycobacterium smegmatis</i> Porin A (MspA) Nanopore. Nano Letters, 2021, 21, 6703-6710.	9.1	95
9	A New Germanium-Based Anode Material with High Stability for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11883-11890.	6.7	12
10	Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porinâ€A (MspA) Nanoporeâ€√rap. Angewandte Chemie, 2021, 133, 24056.	2.0	5
11	Allosteric Switching of Calmodulin in a <i>Mycobacterium smegmatis</i> porinâ€A (MspA) Nanoporeâ€Trap. Angewandte Chemie - International Edition, 2021, 60, 23863-23870.	13.8	25
12	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	12.0	61
13	Electronic Structure of Anode Material Li ₂ TiSiO ₅ and Its Structural Evolution during Lithiation. Journal of Physical Chemistry C, 2021, 125, 3733-3744.	3.1	3
14	Programmable nano-reactors for stochastic sensing. Nature Communications, 2021, 12, 5811.	12.8	29
15	Highly Stable Na ₃ Fe ₂ (PO ₄) ₃ @Hard Carbon Sodium-Ion Full Cell for Low-Cost Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 1380-1387.	6.7	44
16	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 3161-3166.	2.0	17
17	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 3137-3142.	13.8	52
18	A New Polyanion Na ₃ Fe ₂ (PO ₄)P ₂ O ₇ Cathode with High Electrochemical Performance for Sodium-Ion Batteries. ACS Energy Letters, 2020, 5, 3788-3796.	17.4	62

#	Article	IF	CITATIONS
19	Reversible Switch of a Selenium-Containing Antioxidant System Regulated by Protein Assembly. ACS Catalysis, 2020, 10, 9735-9740.	11.2	11
20	Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. Journal of Power Sources, 2020, 461, 228130.	7.8	55
21	An All-Solid-State Sodium–Sulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. ACS Applied Energy Materials, 2019, 2, 5263-5271.	5.1	42
22	Lithium ion storage in lithium titanium germanate. Nano Energy, 2019, 66, 104094.	16.0	15
23	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 4399-4405.	6.7	5
24	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. Batteries and Supercaps, 2019, 2, 867-873.	4.7	12
25	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	8.0	75
26	Sandwich, Verticalâ€Channeled Thick Electrodes with High Rate and Cycle Performance. Advanced Functional Materials, 2019, 29, 1809196.	14.9	76
27	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125.	8.2	13
28	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	13.8	89
29	Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics, 2019, 25, 1083-1090.	2.4	24
30	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	2.0	11
31	Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries. Chemical Engineering Journal, 2019, 363, 285-291.	12.7	26
32	An expanded clay-coated separator with unique microporous structure for enhancing electrochemical performance of rechargeable hybrid aqueous batteries. Journal of Solid State Electrochemistry, 2019, 23, 215-226.	2.5	11
33	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	5.7	10
34	Titanosilicate Sitinakite Compound As a Low-Potential Anode for Sodium-Ion Battery. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Uniform Ordered Two-Dimensional Mesoporous TiO ₂ Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. Journal of the American Chemical Society, 2018, 140, 4135-4143.	13.7	242
36	Ultrasmall TiO ₂ -Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 14818-14826.	8.0	54

#	Article	IF	CITATIONS
37	Li2TiSiO5 and expanded graphite nanocomposite anode material withÂimproved rate performance for lithium-ion batteries. Electrochimica Acta, 2018, 260, 695-702.	5.2	31
38	Na 1.68 H 0.32 Ti 203 Si 04 Â \cdot 1.76 H 20 as a Low-Potential Anode Material for Sodium-Ion Battery. ACS Applied Energy Materials, 2018, , .	5.1	4
39	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	8.0	94
40	Carbon-coated Li ₄ Ti ₅ O ₁₂ nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10902-10908.	10.3	52
41	Amorphous <scp>MnO₂</scp> as Cathode Material for Sodiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1294-1298.	4.9	29
42	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9126-9130.	13.8	154
43	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie, 2017, 129, 9254-9258.	2.0	22
44	Monoclinic Phase Na ₃ Fe ₂ (PO ₄) ₃ : Synthesis, Structure, and Electrochemical Performance as Cathode Material in Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 1306-1314.	6.7	81
45	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. New Journal of Chemistry, 2017, 41, 13060-13066.	2.8	18
46	Porous ZrNb ₂₄ O ₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 22297-22304.	10.3	71
47	A Simple Prelithiation Strategy To Build a Highâ€Rate and Longâ€Life Lithiumâ€lon Battery with Improved Lowâ€Temperature Performance. Angewandte Chemie - International Edition, 2017, 56, 16606-16610.	13.8	67
48	A Simple Prelithiation Strategy To Build a Highâ∈Rate and Longâ∈Life Lithiumâ∈lon Battery with Improved Lowâ∈Temperature Performance. Angewandte Chemie, 2017, 129, 16833-16837.	2.0	9
49	Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nature Communications, 2016, 7, 13318.	12.8	226
50	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	17.4	20