Linus T-Y Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458990/publications.pdf Version: 2024-02-01

LINUIS T-Y TOAL

#	Article	IF	CITATIONS
1	Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits. Nature Human Behaviour, 2022, 6, 155-163.	6.2	22
2	A single-cell atlas of human and mouse white adipose tissue. Nature, 2022, 603, 926-933.	13.7	277
3	Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of <i>Ppp2r1b</i> . Science Translational Medicine, 2022, 14, eabh3831.	5.8	11
4	Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature, 2021, 590, 480-485.	13.7	102
5	Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron, 2021, 109, 2106-2115.e4.	3.8	43
6	Mesothelial cells are not a source of adipocytes in mice. Cell Reports, 2021, 36, 109388.	2.9	22
7	Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metabolism, 2021, 33, 1449-1465.e6.	7.2	38
8	PPARÎ ³ -induced upregulation of subcutaneous fat adiponectin secretion, glyceroneogenesis and BCAA oxidation requires mTORC1 activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158967.	1.2	10
9	lsthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism, 2021, 33, 1836-1852.e11.	7.2	56
10	Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Science Signaling, 2021, 14, eabh3839.	1.6	10
11	Adipocytes fail to maintain cellular identity during obesity due to reduced PPARÎ ³ activity and elevated TGFβ-SMAD signaling. Molecular Metabolism, 2020, 42, 101086.	3.0	16
12	Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nature Metabolism, 2019, 1, 360-370.	5.1	103
13	Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 2018, 27, 1121-1137.e5.	7.2	168
14	Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metabolism, 2018, 28, 631-643.e3.	7.2	147
15	A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 2017, 20, 484-496.	7.1	635
16	Simultaneous Transcriptional and Epigenomic Profiling from Specific Cell Types within Heterogeneous Tissues InÂVivo. Cell Reports, 2017, 18, 1048-1061.	2.9	117
17	Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron, 2017, 96, 190-206.e7.	3.8	64
18	NCoR1-independent mechanism plays a role in the action of the unliganded thyroid hormone receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8458-E8467.	3.3	17

LINUS T-Y TSAI

#	Article	IF	CITATIONS
19	Nuclear Mechanisms of Insulin Resistance. Trends in Cell Biology, 2016, 26, 341-351.	3.6	60
20	Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nature Cell Biology, 2015, 17, 44-56.	4.6	61
21	A Smooth Muscle-Like Origin for Beige Adipocytes. Cell Metabolism, 2014, 19, 810-820.	7.2	373
22	Novel Mechanism of Positive versus Negative Regulation by Thyroid Hormone Receptor β1 (TRβ1) Identified by Genome-wide Profiling of Binding Sites in Mouse Liver. Journal of Biological Chemistry, 2014, 289, 1313-1328.	1.6	92
23	Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500, 477-481.	13.7	1,168
24	<i>Drosophila tao</i> Controls Mushroom Body Development and Ethanol-Stimulated Behavior through <i>par-1</i> . Journal of Neuroscience, 2011, 31, 1139-1148.	1.7	59
25	Drosophila, a genetic model system to study cocaine-related behaviors: A review with focus on LIM-only proteins. Neuropharmacology, 2009, 56, 97-106.	2.0	51
26	Distinct Behavioral Responses to Ethanol Are Regulated by Alternate RhoGAP18B Isoforms. Cell, 2006, 127, 199-211.	13.5	115
27	moody Encodes Two GPCRs that Regulate Cocaine Behaviors and Blood-Brain Barrier Permeability in Drosophila. Cell, 2005, 123, 145-156.	13.5	219
28	Lmo Mutants Reveal a Novel Role for Circadian Pacemaker Neurons in Cocaine-Induced Behaviors. PLoS Biology, 2004, 2, e408.	2.6	60
29	High-Resolution Analysis of Ethanol-Induced Locomotor Stimulation in <i>Drosophila</i> . Journal of Neuroscience, 2002, 22, 11035-11044.	1.7	162
30	Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Current Biology, 2000, 10, 187-194.	1.8	288
31	Mutations affecting the pattern of the PNS in drosophila reveal novel aspects of neuronal development. Neuron, 1994, 13, 269-287.	3.8	143