Tao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458819/publications.pdf

Version: 2024-02-01

315616 201575 2,499 45 27 38 h-index citations g-index papers 45 45 45 2314 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 2022, 153, 111791.	8.2	78
2	Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. Journal of Hazardous Materials, 2022, 425, 127906.	6. 5	83
3	Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology, 2022, 346, 126581.	4.8	60
4	Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations. Environmental Pollution, 2022, 299, 118877.	3.7	15
5	Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. Bioresource Technology, 2022, 351, 126976.	4.8	29
6	Enhanced adsorption of $Cu(II)$ and $Zn(II)$ from aqueous solution by polyethyleneimine modified straw hydrochar. Science of the Total Environment, 2021, 778, 146116.	3.9	105
7	Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. Journal of Hazardous Materials, 2021, 416, 125738.	6.5	37
8	Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 2020, 241, 124888.	4.2	33
9	Struvite pyrolysate cycling technology assisted by thermal hydrolysis pretreatment to recover ammonium nitrogen from composting leachate. Journal of Cleaner Production, 2020, 242, 118442.	4.6	60
10	Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption. Chemical Engineering Journal, 2020, 379, 122254.	6.6	69
11	Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. Science of the Total Environment, 2020, 698, 134240.	3.9	69
12	Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environmental Pollution, 2020, 264, 114773.	3.7	82
13	Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chemistry, 2020, 22, 5628-5638.	4.6	68
14	Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere, 2020, 248, 125927.	4.2	120
15	Swine manure valorization for phosphorus and nitrogen recovery by catalytic–thermal hydrolysis and struvite crystallization. Science of the Total Environment, 2020, 729, 138999.	3.9	53
16	Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system. Science of the Total Environment, 2019, 646, 1140-1154.	3.9	96
17	Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment. Journal of Environmental Management, 2019, 236, 108-117.	3.8	88
18	Innovations of phosphorus sustainability: implications for the whole chain. Frontiers of Agricultural Science and Engineering, 2019, 6, 321.	0.9	14

#	Article	IF	CITATIONS
19	The current phosphate recycling situation in China and Germany: a comparative review. Frontiers of Agricultural Science and Engineering, 2019, 6, 403.	0.9	7
20	Hydrothermal Process for Extracting Phosphate from Animal Manure. , 2019, , 377-389.		2
21	Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technology, 2018, 247, 370-379.	4.8	182
22	Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure. Science of the Total Environment, 2018, 621, 1512-1526.	3.9	46
23	Recovery of Phosphorus From Swine Manure by Ultrasound/H2O2 Digestion, Struvite Crystallization, and Ferric Oxide Hydrate/Biochar Adsorption. Frontiers in Chemistry, 2018, 6, 464.	1.8	10
24	High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 314-323.	2.3	63
25	Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Bioresource Technology, 2017, 235, 185-192.	4.8	107
26	Microwave-assisted digestion and NaOH treatment of waste-activated sludge to recover phosphorus by crystallizing struvite. Environmental Technology (United Kingdom), 2017, 38, 1211-1222.	1.2	15
27	Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process. Waste Management, 2017, 60, 219-229.	3.7	45
28	PH-sensitive dispersion of carbon nanotubes by myoglobin. AIP Conference Proceedings, 2017, , .	0.3	0
29	Assessment of Phosphorus Recovery from Swine Wastewater in Beijing, China. Sustainability, 2017, 9, 1845.	1.6	3
30	Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor. Scientific Reports, 2016, 6, 32215.	1.6	23
31	Adsorption and degradation of 2,4-dichlorophenoxyacetic acid in spiked soil with Fe0nanoparticles supported by biochar. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 215-221.	0.3	2
32	Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. Journal of Environmental Sciences, 2015, 29, 106-114.	3.2	140
33	Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater. International Journal of Environmental Research and Public Health, 2014, 11, 9217-9237.	1.2	177
34	Dynamics of nitrogen transformation depending on different operational strategies in laboratory-scale tidal flow constructed wetlands. Science of the Total Environment, 2014, 487, 49-56.	3.9	46
35	Phosphate recovery from animal manure wastewater by struvite crystallization and CO ₂ degasification reactor. Ecological Chemistry and Engineering S, 2014, 21, 89-99.	0.3	19
36	Application of Biochar for Phosphate Adsorption and Recovery from Wastewater. Advanced Materials Research, 2013, 750-752, 1389-1392.	0.3	3

#	Article	IF	Citations
37	Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. Journal of Environmental Sciences, 2011, 23, 881-890.	3.2	37
38	Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. Journal of Hazardous Materials, 2010, 176, 444-450.	6.5	73
39	Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 2009, 166, 911-915.	6.5	153
40	Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Research, 2009, 43, 5209-5215.	5.3	159
41	Ammonium Nitrogen Removal from Wastewater by Biochar Adsorption. Advanced Materials Research, 0, 726-731, 1679-1682.	0.3	3
42	Nutrient Recovery from Piggy Wastewater by Enhancing Struvite Crystallization Process. Applied Mechanics and Materials, 0, 522-524, 579-583.	0.2	0
43	Effects of Organic Coexisting Impurities on Phosphorus Recovery from Animal Manure Wastewater by Struvite Crystallization. Advanced Materials Research, 0, 955-959, 1983-1986.	0.3	2
44	Biochar Adsorption Treatment for Typical Pollutants Removal in Livestock Wastewater: A Review. , 0, ,		13
45	Phosphorus Recovery by Struvite Crystallization from Livestock Wastewater and Reuse as Fertilizer: A Review., 0,,.		10