Natik Piri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458774/publications.pdf

Version: 2024-02-01

687363 752698 26 812 13 20 citations h-index g-index papers 26 26 26 1257 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Scientific Reports, 2022, 12, .	3.3	9
2	Loss of Rbfox1 Does Not Affect Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Frontiers in Neuroscience, 2021, 15, 687690.	2.8	5
3	The effect of Rbfox2 modulation on retinal transcriptome and visual function. Scientific Reports, 2020, 10, 19683.	3.3	7
4	The effect of celastrol on the ocular hypertension-induced degeneration of retinal ganglion cells. Neuroscience Letters, 2018, 670, 89-93.	2.1	13
5	RNA-binding protein Rbpms is represented in human retinas by isoforms A and C and its transcriptional regulation involves Sp1-binding site. Molecular Genetics and Genomics, 2018, 293, 819-830.	2.1	9
6	Downregulation of splicing regulator RBFOX1 compromises visual depth perception. PLoS ONE, 2018, 13, e0200417.	2.5	13
7	Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 2016, 52, 22-46.	15.5	56
8	Celastrol supports survival of retinal ganglion cells injured by optic nerve crush. Brain Research, 2015, 1609, 21-30.	2.2	22
9	Crystallins in Retinal Ganglion Cell Survival and Regeneration. Molecular Neurobiology, 2013, 48, 819-828.	4.0	42
10	The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Experimental Eye Research, 2013, 112, 21-28.	2.6	28
11	The Neuronal EGF-Related Gene Nell2 Interacts with Macf1 and Supports Survival of Retinal Ganglion Cells after Optic Nerve Injury. PLoS ONE, 2012, 7, e34810.	2.5	22
12	Quantitative Analysis of Retinal Ganglion Cell Survival with Rbpms Immunolabeling in Animal Models of Optic Neuropathies., 2011, 52, 9694.		63
13	RNA Binding Protein with Multiple Splicing: A New Marker for Retinal Ganglion Cells. , 2010, 51, 1052.		151
14	Thioredoxins 1 and 2 Protect Retinal Ganglion Cells from Pharmacologically Induced Oxidative Stress, Optic Nerve Transection and Ocular Hypertension. Advances in Experimental Medicine and Biology, 2010, 664, 355-363.	1.6	16
15	Regulatory Sequences in the 3′ Untranslated Region of the Human cGMP-Phosphodiesterase β-Subunit Gene. , 2009, 50, 2591.		1
16	The Role of $\hat{l}\pm A$ - and $\hat{l}\pm B$ -Crystallins in the Survival of Retinal Ganglion Cells after Optic Nerve Axotomy. , 2009, 50, 3869.		62
17	Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Transactions of the American Ophthalmological Society, 2009, 107, 161-5.	1.4	22
18	Activation of autophagy in retinal ganglion cells. Journal of Neuroscience Research, 2008, 86, 2943-2951.	2.9	74

#	Article	IF	CITATION
19	Protective Effect of Thioredoxins 1 and 2 in Retinal Ganglion Cells after Optic Nerve Transection and Oxidative Stress., 2008, 49, 3535.		50
20	Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Research, 2007, 1141, 1-9.	2.2	65
21	Translational regulation of the rod photoreceptor cGMP-phosphodiesterase: The role of the $5\hat{a}\in^2$ - and $3\hat{a}\in^2$ -untranslated regions. Experimental Eye Research, 2006, 83, 841-848.	2.6	2
22	Expression of hermes gene is restricted to the ganglion cells in the retina. Neuroscience Letters, 2006, 405, 40-45.	2.1	21
23	Co-expression of heat shock transcription factors 1 and 2 in rat retinal ganglion cells. Neuroscience Letters, 2006, 405, 191-195.	2.1	21
24	Transcriptional and Post-Transcriptional Regulation of the Rod cGMP-Phosphodiesterase \hat{l}^2 -Subunit Gene. , 2006, 572, 217-229.		2
25	Gene expression changes in the retina following optic nerve transection. Molecular Vision, 2006, 12 , $1660-73$.	1.1	24
26	Differential Expression of Rod Photoreceptor cGMP-Phosphodiesterase \hat{l}_{\pm} and \hat{l}_{\pm}^2 Subunits. Journal of Biological Chemistry, 2003, 278, 36999-37005.	3.4	12