
Kimberly A See

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458669/publications.pdf Version: 2024-02-01

KIMPEDIVA SEE

#	Article	IF	CITATIONS
1	Multivalent Ion Conduction in Inorganic Solids. Chemistry of Materials, 2022, 34, 881-898.	3.2	14
2	Electrochemically driven cross-electrophile coupling of alkyl halides. Nature, 2022, 604, 292-297.	13.7	139
3	Metal–Metal Bonding as an Electrode Design Principle in the Low-Strain Cluster Compound LiScMo ₃ O ₈ . Journal of the American Chemical Society, 2022, 144, 5841-5854.	6.6	11
4	Hysteresis in electrochemical systems. , 2022, 1, .		25
5	Promoting Reversibility of Multielectron Redox in Alkali-Rich Sulfide Cathodes through Cryomilling. Chemistry of Materials, 2022, 34, 3236-3245.	3.2	1
6	An Exploration of Sulfur Redox in Lithium Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 10119-10132.	6.6	14
7	From solid electrolyte to zinc cathode: vanadium substitution in ZnPS3. JPhys Materials, 2021, 4, 024005.	1.8	1
8	Fluoride in the SEI Stabilizes the Li Metal Interface in Li–S Batteries with Solvate Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 18865-18875.	4.0	14
9	Mg Anode Passivation Caused by the Reaction of Dissolved Sulfur in Mg–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 29461-29470.	4.0	12
10	Controlling Covalency and Anion Redox Potentials through Anion Substitution in Li-Rich Chalcogenides. Chemistry of Materials, 2021, 33, 378-391.	3.2	20
11	Activating Magnesium Electrolytes through Chemical Generation of Free Chloride and Removal of Trace Water. ACS Applied Materials & Interfaces, 2021, 13, 671-680.	4.0	10
12	Dense garnet-type electrolyte with coarse grains for improved air stability and ionic conductivity. Journal of Energy Storage, 2020, 27, 101128.	3.9	21
13	Conditioning-Free Mg Electrolyte by the Minor Addition of Mg(HMDS) ₂ . ACS Applied Materials & Interfaces, 2020, 12, 5226-5233.	4.0	20
14	Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes. RSC Advances, 2020, 10, 39562-39571.	1.7	19
15	Understanding the role of crystallographic shear on the electrochemical behavior of niobium oxyfluorides. Journal of Materials Chemistry A, 2020, 8, 12623-12632.	5.2	12
16	Multielectron, Cation and Anion Redox in Lithium-Rich Iron Sulfide Cathodes. Journal of the American Chemical Society, 2020, 142, 6737-6749.	6.6	46
17	A Super-Oxidized Radical Cationic Icosahedral Boron Cluster. Journal of the American Chemical Society, 2020, 142, 12948-12953.	6.6	16
18	Effect of the Electrolyte Solvent on Redox Processes in Mg–S Batteries. Inorganic Chemistry, 2019, 58, 10472-10482.	1.9	21

KIMBERLY A SEE

#	Article	IF	CITATIONS
19	Solid-State Divalent Ion Conduction in ZnPS ₃ . Chemistry of Materials, 2019, 31, 3652-3661.	3.2	37
20	Elucidating Zn and Mg Electrodeposition Mechanisms in Nonaqueous Electrolytes for Next-Generation Metal Batteries. Journal of Physical Chemistry C, 2018, 122, 13790-13796.	1.5	37
21	Reversible Capacity of Conductive Carbon Additives at Low Potentials: Caveats for Testing Alternative Anode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A327-A333.	1.3	41
22	Thiol-based electrolyte additives for high-performance lithium-sulfur batteries. Nano Energy, 2017, 32, 50-58.	8.2	106
23	Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li ⁺ Solvation Structure and Li–S Battery Performance. ACS Applied Materials & Interfaces, 2017, 9, 39357-39370.	4.0	58
24	Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution. ACS Applied Materials & Interfaces, 2017, 9, 35729-35739.	4.0	60
25	Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 34360-34371.	4.0	58
26	The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions. Journal of the American Chemical Society, 2016, 138, 328-337.	6.6	186
27	Sulfur-Functionalized Mesoporous Carbons as Sulfur Hosts in Li–S Batteries: Increasing the Affinity of Polysulfide Intermediates to Enhance Performance. ACS Applied Materials & Interfaces, 2014, 6, 10908-10916.	4.0	94
28	Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries. Carbon, 2014, 69, 543-551.	5.4	64
29	Ab Initio Structure Search and in Situ ⁷ Li NMR Studies of Discharge Products in the Li–S Battery System. Journal of the American Chemical Society, 2014, 136, 16368-16377.	6.6	132
30	A Stable Polyanilineâ€Benzoquinoneâ€Hydroquinone Supercapacitor. Advanced Materials, 2014, 26, 5095-5100.	11.1	207
31	Bimodal Mesoporous Titanium Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li–O ₂ Batteries. Chemistry of Materials, 2013, 25, 3779-3781.	3.2	62
32	A High Capacity Calcium Primary Cell Based on the Ca–S System. Advanced Energy Materials, 2013, 3, 1056-1061.	10.2	93
33	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	3.2	51