Dongsheng Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458306/publications.pdf

Version: 2024-02-01

50 10,957 27 50 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	IKKβ/NF-κB Activation Causes Severe Muscle Wasting in Mice. Cell, 2004, 119, 285-298.	13.5	1,189
3	Hypothalamic IKKβ/NF-κB and ER Stress Link Overnutrition to Energy Imbalance and Obesity. Cell, 2008, 135, 61-73.	13.5	1,188
4	Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature, 2013, 497, 211-216.	13.7	738
5	Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 2017, 548, 52-57.	13.7	424
6	IKKÎ 2 /NF- 1 2 B disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nature Cell Biology, 2012, 14, 999-1012.	4.6	312
7	Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends in Endocrinology and Metabolism, 2013, 24, 40-47.	3.1	217
8	Defective Hypothalamic Autophagy Directs the Central Pathogenesis of Obesity via the lκB Kinase β (IKKβ)/NF-κB Pathway. Journal of Biological Chemistry, 2011, 286, 32324-32332.	1.6	215
9	Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nature Medicine, 2011, 17, 883-887.	15.2	201
10	Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging, 2012, 4, 98-115.	1.4	159
11	Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2939-2944.	3.3	152
12	Hypothalamic inflammation: a doubleâ€edged sword to nutritional diseases. Annals of the New York Academy of Sciences, 2011, 1243, E1-39.	1.8	131
13	Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight. Cell Metabolism, 2017, 25, 1091-1102.e4.	7.2	124
14	Obesity- and aging-induced excess of central transforming growth factor- \hat{l}^2 potentiates diabetic development via an RNA stress response. Nature Medicine, 2014, 20, 1001-1008.	15.2	120
15	Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. Journal of Clinical Investigation, 2014, 124, 3501-3513.	3.9	110
16	"Hypothalamic Microinflammation―Paradigm in Aging and Metabolic Diseases. Cell Metabolism, 2019, 30, 19-35.	7.2	92
17	NFκB-mediated metabolic inflammation in peripheral tissues versus central nervous system. Cell Cycle, 2009, 8, 2542-2548.	1.3	81
18	Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends in Neurosciences, 2015, 38, 36-44.	4.2	81

#	Article	IF	Citations
19	Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress. Scientific Reports, 2016, 6, 20848.	1.6	78
20	Reducing Hypothalamic Stem Cell Senescence Protects against Aging-Associated Physiological Decline. Cell Metabolism, 2020, 31, 534-548.e5.	7.2	75
21	Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E32-E41.	1.8	47
22	Aberrant miR199a-5p/caveolin1/PPARα axis in hepatic steatosis. Journal of Molecular Endocrinology, 2014, 53, 393-403.	1.1	43
23	The hypothalamus for whole-body physiology: from metabolism to aging. Protein and Cell, 2022, 13, 394-421.	4.8	41
24	Rapid linkage of innate immunological signals to adaptive immunity by the brain-fat axis. Nature Immunology, 2015, 16, 525-533.	7.0	34
25	Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Molecular Metabolism, 2014, 3, 313-324.	3.0	32
26	A new horizon: oxytocin as a novel therapeutic option for obesity and diabetes. Drug Discovery Today Disease Mechanisms, 2013, 10, e63-e68.	0.8	31
27	Hypothalamic and inflammatory basis of hypertension. Clinical Science, 2017, 131, 211-223.	1.8	30
28	Agingâ€induced aberrant RAGE/PPARα axis promotes hepatic steatosis via dysfunctional mitochondrial β oxidation. Aging Cell, 2020, 19, e13238.	3.0	30
29	One Step from Prediabetes to Diabetes: Hypothalamic Inflammation?. Endocrinology, 2012, 153, 1010-1013.	1.4	27
30	Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis. Nature Communications, 2015, 6, 6704.	5.8	25
31	Canonical transient receptor potential 3 channels activate NFâ€ÎºB to mediate allergic airway disease via PKCâ€Î±/IκBâ€Î± and calcineurin/IκBâ€Î² pathways. FASEB Journal, 2016, 30, 214-229.	0.2	24
32	Central Leptin and Tumor Necrosis Factor- \hat{l}_{\pm} (TNF \hat{l}_{\pm}) in Diurnal Control of Blood Pressure and Hypertension. Journal of Biological Chemistry, 2016, 291, 15131-15142.	1.6	22
33	Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1. Nature Neuroscience, 2020, 23, 832-841.	7.1	22
34	Neuroinflammation in Overnutrition-Induced Diseases. Vitamins and Hormones, 2013, 91, 195-218.	0.7	17
35	miR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy. Cell Death and Disease, 2018, 9, 405.	2.7	16
36	Innate and Adaptive Immunity of Murine Neural Stem Cell-Derived piRNA Exosomes/Microvesicles against Pseudotyped SARS-CoV-2 and HIV-Based Lentivirus. IScience, 2020, 23, 101806.	1.9	16

#	Article	IF	CITATIONS
37	Neural Programmatic Role of Leptin, TNFα, Melanocortin, and Glutamate in Blood Pressure Regulation vs Obesity-Related Hypertension in Male C57BL/6 Mice. Endocrinology, 2017, 158, 1766-1775.	1.4	14
38	Obesity-associated extracellular mtDNA activates central $TGF\hat{l}^2$ pathway to cause blood pressure increase. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E161-E174.	1.8	12
39	Age-dependent decline of hypothalamic HIF2α in response to insulin and its contribution to advanced age-associated metabolic disorders in mice. Journal of Biological Chemistry, 2019, 294, 4946-4955.	1.6	11
40	Hypothalamic extended synaptotagmin-3 contributes to the development of dietary obesity and related metabolic disorders. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20149-20158.	3.3	11
41	Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system. Life Science Alliance, 2022, 5, e202101240.	1.3	10
42	Central mechanisms of obesity and related metabolic diseases. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 309-310.	2.6	8
43	Multifaceted secretion of htNSC-derived hypothalamic islets induces survival and antidiabetic effect via peripheral implantation in mice. ELife, 2020, 9, .	2.8	8
44	Brain is an endocrine organ through secretion and nuclear transfer of parathymosin. Life Science Alliance, 2020, 3, e202000917.	1.3	8
45	Control of lifespan and survival by Drosophila NF-κB signaling through neuroendocrine cells and neuroblasts. Aging, 2020, 12, 24604-24622.	1.4	7
46	Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action. Molecular Metabolism, 2020, 32, 56-68.	3.0	6
47	Hypothalamic microinflammation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 311-322.	1.0	6
48	GnRH pulse frequency and irregularity play a role in male aging. Nature Aging, 2021, 1, 904-918.	5.3	4
49	Hypertension in obesity: the role of hypothalamic inflammation. Nature Reviews Endocrinology, 2014, 10, 760-760.	4.3	3
50	Young cerebrospinal fluid contains key rejuvenating factors. , 0, , .		0