Peter Storz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457969/publications.pdf

Version: 2024-02-01

70 papers 5,577 citations

34 h-index 95266 68 g-index

74 all docs

74 docs citations

times ranked

74

8695 citing authors

#	Article	IF	CITATIONS
1	Generation of Hydrogen Peroxide and Downstream Protein Kinase D1 Signaling Is a Common Feature of Inducers of Pancreatic Acinar-to-Ductal Metaplasia. Antioxidants, 2022, 11, 137.	5.1	6
2	Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. IScience, 2022, 25, 104327.	4.1	7
3	Dysfunctional EGFR and oxidative stress-induced PKD1 signaling drive formation of DCLK1+ pancreatic stem cells. IScience, 2021, 24, 102019.	4.1	9
4	CXCL10/CXCR3 signaling contributes to an inflammatory microenvironment and its blockade enhances progression of murine pancreatic precancerous lesions. ELife, 2021, 10, .	6.0	34
5	The GEFâ€H1/PKD3 signaling pathway promotes the maintenance of tripleâ€negative breast cancer stem cells. International Journal of Cancer, 2020, 146, 3423-3434.	5.1	13
6	Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron, 2020, 106, 727-742.e6.	8.1	152
7	Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2020, 158, 2072-2081.	1.3	89
8	Early detection and imaging strategies to reveal and target developing pancreatic cancer. Expert Review of Anticancer Therapy, 2020, 20, 81-83.	2.4	8
9	Mucin-1 is required for Coxsackie Virus B3-induced inflammation in pancreatitis. Scientific Reports, 2019, 9, 10656.	3.3	2
10	Sangivamycin and its derivatives inhibit Haspin-Histone H3-survivin signaling and induce pancreatic cancer cell death. Scientific Reports, 2019, 9, 16588.	3.3	17
11	Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. Journal of Biological Chemistry, 2019, 294, 15759-15767.	3.4	12
12	Pomalidomide Alters Pancreatic Macrophage Populations to Generate an Immune-Responsive Environment at Precancerous and Cancerous Lesions. Cancer Research, 2019, 79, 1535-1548.	0.9	22
13	Targeting the tumor microenvironment in pancreatic ductal adenocarcinoma. Expert Review of Anticancer Therapy, 2019, 19, 473-482.	2.4	26
14	Mimicking and Manipulating Pancreatic Acinar-to-Ductal Metaplasia in 3-dimensional Cell Culture. Journal of Visualized Experiments, 2019, , .	0.3	7
15	Protein kinase D1: gatekeeper of the epithelial phenotype and key regulator of cancer metastasis?. British Journal of Cancer, 2018, 118, 459-461.	6.4	7
16	The phosphorylation status of PIP5K1C at serine 448 can be predictive for invasive ductal carcinoma of the breast. Oncotarget, 2018, 9, 36358-36370.	1.8	6
17	KRas, ROS and the initiation of pancreatic cancer. Small GTPases, 2017, 8, 38-42.	1.6	65
18	Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 296-304.	17.8	255

#	Article	IF	Citations
19	Differential regulation of PKD isoforms in oxidative stress conditions through phosphorylation of a conserved Tyr in the P+1 loop. Scientific Reports, 2017, 7, 887.	3.3	15
20	The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis. Cell Reports, 2017, 19, 1322-1333.	6.4	87
21	Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cellular Signalling, 2017, 40, 1-9.	3.6	18
22	Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Scientific Reports, 2017, 7, 9524.	3.3	8
23	Glycogen synthase kinaseâ€3β ablation limits pancreatitisâ€induced acinarâ€toâ€ductal metaplasia. Journal of Pathology, 2017, 243, 65-77.	4.5	29
24	Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Review of Anticancer Therapy, 2017, 17, 19-31.	2.4	51
25	Mitochondrial and Oxidative Stress-Mediated Activation of Protein Kinase D1 and Its Importance in Pancreatic Cancer. Frontiers in Oncology, 2017, 7, 41.	2.8	28
26	NFATc4 Regulates <i>Sox9</i> Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells International, 2016, 2016, 1-11.	2.5	55
27	Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion. Journal of Clinical Medicine, 2016, 5, 20.	2.4	35
28	The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer. Scientific Reports, 2016, 6, 33758.	3.3	16
29	Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ. Scientific Reports, 2016, 6, 35963.	3.3	10
30	LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1197-1208.	2.4	41
31	Legumain is activated in macrophages during pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 311, G548-G560.	3.4	35
32	Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Reports, 2016, 14, 2325-2336.	6.4	199
33	A bright future for protein kinase D1 as a drug target to prevent or treat pancreatic cancer. Molecular and Cellular Oncology, 2016, 3, e1035477.	0.7	1
34	Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages. PLoS Pathogens, 2016, 12, e1005915.	4.7	11
35	Osteopontin is a multi-faceted pro-tumorigenic driver for central nervous system lymphoma. Oncotarget, 2016, 7, 32156-32171.	1.8	14
36	NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar–Ductal Transdifferentiation in the Pancreas. Gastroenterology, 2015, 148, 1024-1034.e9.	1.3	73

#	Article	lF	CITATIONS
37	Effective Targeting of Estrogen Receptor–Negative Breast Cancers with the Protein Kinase D Inhibitor CRT0066101. Molecular Cancer Therapeutics, 2015, 14, 1306-1316.	4.1	59
38	Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nature Communications, 2015, 6, 6200.	12.8	79
39	Targeting protein kinase C subtypes in pancreatic cancer. Expert Review of Anticancer Therapy, 2015, 15, 433-438.	2.4	17
40	Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cellular and Molecular Life Sciences, 2015, 72, 4369-4382.	5.4	35
41	Mutant KRAS–Induced Expression of ICAM-1 in Pancreatic Acinar Cells Causes Attraction of Macrophages to Expedite the Formation of Precancerous Lesions. Cancer Discovery, 2015, 5, 52-63.	9.4	152
42	Differences in Metabolic Programming Define the Site of Breast Cancer Cell Metastasis. Cell Metabolism, 2015, 22, 536-537.	16.2	9
43	Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120Âcatenin activity. Nature Cell Biology, 2015, 17, 1145-1157.	10.3	93
44	The crosstalk between acinar cells with <i>Kras </i> mutations and M1-polarized macrophages leads to initiation of pancreatic precancerous lesions. Oncolmmunology, 2015, 4, e1008794.	4.6	15
45	Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer., 2015, 72, 4369.		1
46	Inflammatory macrophages in pancreatic acinar cell metaplasia and initiation of pancreatic cancer. Oncoscience, 2015, 2, 247-251.	2.2	25
47	The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma. Oncotarget, 2015, 6, 29740-29752.	1.8	10
48	Abstract 7: LPA/PKD-1-HDAC7-FoxO1 Signaling-mediated Endothelial CD36 Transcriptional Repression and Proarteriogenic Reprogramming. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	1
49	Protein Kinase D Isoforms Differentially Modulate Cofilin-Driven Directed Cell Migration. PLoS ONE, 2014, 9, e98090.	2.5	31
50	PKD1 Phosphorylation-Dependent Degradation of SNAIL by SCF-FBXO11 Regulates Epithelial-Mesenchymal Transition and Metastasis. Cancer Cell, 2014, 26, 358-373.	16.8	196
51	Abstract 565: LPA-PKD-1-HDAC7/NCoR1-FoxO1 Signaling Axis Regulates Endothelial Cell CD36 Transcription and Stimulates Arteriogenic Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	1
52	Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-lºB and MMPs. Journal of Cell Biology, 2013, 202, 563-577.	5.2	225
53	Regulation of VASP by phosphorylation. Cell Adhesion and Migration, 2013, 7, 492-496.	2.7	50
54	Abstract 229: Protein Kinase D-1 Regulates CD36 Transcription and Arteriogenic Differentiation of Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0

#	Article	IF	CITATIONS
55	EGF Receptor Is Required for KRAS-Induced Pancreatic Tumorigenesis. Cancer Cell, 2012, 22, 304-317.	16.8	445
56	Forkhead Homeobox Type O Transcription Factors in the Responses to Oxidative Stress. Antioxidants and Redox Signaling, 2011, 14, 593-605.	5.4	280
57	FOXO3a Promotes Tumor Cell Invasion through the Induction of Matrix Metalloproteinases. Molecular and Cellular Biology, 2009, 29, 4906-4917.	2.3	132
58	Mitochondrial ROS – radical detoxification, mediated by protein kinase D. Trends in Cell Biology, 2007, 17, 13-18.	7.9	116
59	Reactive Oxygen Species-Mediated Mitochondria-to-Nucleus Signaling: A Key to Aging and Radical-Caused Diseases. Science Signaling, 2006, 2006, re3-re3.	3.6	90
60	Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochemical Journal, 2005, 387, 47-55.	3.7	59
61	Reactive oxygen species in tumor progression. Frontiers in Bioscience - Landmark, 2005, 10, 1881.	3.0	821
62	Protein Kinase D Mediates Mitochondrion-to-Nucleus Signaling and Detoxification from Mitochondrial Reactive Oxygen Species. Molecular and Cellular Biology, 2005, 25, 8520-8530.	2.3	216
63	Activation Loop Phosphorylation Controls Protein Kinase D-Dependent Activation of Nuclear Factor ¹ B. Molecular Pharmacology, 2004, 66, 870-879.	2.3	102
64	Protein Kinase CÎ ⁻ Selectively Regulates Protein Kinase D-Dependent Activation of NF-Î ^o B in Oxidative Stress Signaling. Molecular and Cellular Biology, 2004, 24, 2614-2626.	2.3	215
65	Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO Journal, 2003, 22, 109-120.	7.8	295
66	Tyrosine Phosphorylation of Protein Kinase D in the Pleckstrin Homology Domain Leads to Activation. Journal of Biological Chemistry, 2003, 278, 17969-17976.	3.4	107
67	NF-κB Signaling: An ALternate Pathway for Oxidate Stress Responses. Cell Cycle, 2003, 2, 9-10.	2.6	52
68	3'-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Frontiers in Bioscience - Landmark, 2002, 7, d886.	3.0	110
69	Protein kinase C î½ selectively activates the mitogen-activated protein kinase (MAPK) p42 pathway. FEBS Letters, 2001, 492, 39-44.	2.8	56
70	Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. , 0 , .		1