Heli Jantunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457944/publications.pdf

Version: 2024-02-01

296 papers

8,810 citations

57758 44 h-index 84 g-index

313 all docs

313 docs citations

313 times ranked 7606 citing authors

#	Article	IF	CITATIONS
1	Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008, 53, 57-90.	19.3	993
2	Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60, 392-412.	19.3	519
3	Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small, 2006, 2, 1021-1025.	10.0	479
4	Polymer–Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review. International Journal of Applied Ceramic Technology, 2010, 7, 415-434.	2,1	239
5	Low temperature co-fired ceramics with ultra-low sintering temperature: A review. Current Opinion in Solid State and Materials Science, 2016, 20, 151-170.	11.5	237
6	Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society, 2000, 20, 2331-2336.	5.7	230
7	Energy Harvesting Research: The Road from Single Source to Multisource. Advanced Materials, 2018, 30, e1707271.	21.0	203
8	Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen. ACS Nano, 2011, 5, 5025-5030.	14.6	137
9	Electrocaloric characteristics in reactive sintered 0.87Pb(Mg1â^•3Nb2â^•3)O3–0.13PbTiO3. Applied Physics Letters, 2008, 92, .	3.3	130
10	Dielectric properties of BST/polymer composite. Journal of the European Ceramic Society, 2007, 27, 3997-4001.	5.7	129
11	Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature. Journal of the American Ceramic Society, 2014, 97, 3378-3379.	3.8	124
12	Electric-field-induced dielectric and temperature changes in aâŸO11⟩-orientedPb(Mg1/3Nb2/3)O3-PbTiO3single crystal. Physical Review B, 2010, 82, .	3.2	122
13	Design aspects of microwave components with LTCC technique. Journal of the European Ceramic Society, 2003, 23, 2541-2548.	5.7	111
14	Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Research, 2011, 4, 360-369.	10.4	109
15	Ultralow Loss CaMgGeO ₄ Microwave Dielectric Ceramic and Its Chemical Compatibility with Silver Electrodes for Low-Temperature Cofired Ceramic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 6458-6466.	6.7	109
16	Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19331-19338.	8.0	105
17	Inkjet printing of transparent and conductive patterns of singleâ€walled carbon nanotubes and PEDOTâ€PSS composites. Physica Status Solidi (B): Basic Research, 2007, 244, 4336-4340.	1.5	104
18	Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring. Scientific Reports, 2018, 8, 13241.	3.3	101

#	Article	IF	CITATIONS
19	A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor. Advanced Materials, 2017, 29, 1700767.	21.0	100
20	Gas sensors based on anodic tungsten oxide. Sensors and Actuators B: Chemical, 2011, 153, 293-300.	7.8	90
21	Glass-Free CuMoO ₄ Ceramic with Excellent Dielectric and Thermal Properties for Ultralow Temperature Cofired Ceramic Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 5632-5639.	6.7	86
22	Electrocaloric effect in a ferroelectricPb(Zn1/3Nb2/3)O3-PbTiO3single crystal. Physical Review B, 2010, 81, .	3.2	81
23	Electrocaloric properties in relaxor ferroelectric (1â^' <i>x</i>)Pb(Mg1/3Nb2/3)O3â€" <i>x</i> PbTiO3 system. Journal of Applied Physics, 2013, 114, .	2.5	81
24	Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.	14.6	79
25	Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Applied Physics Letters, 2017, 110, .	3.3	79
26	Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sensors and Actuators B: Chemical, 2013, 186, 90-95.	7.8	78
27	Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Research, 2018, 11, 4215-4224.	10.4	76
28	Carbonâ€Nanotubeâ€Based Electrical Brush Contacts. Advanced Materials, 2009, 21, 2054-2058.	21.0	73
29	Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. Journal of Electroceramics, 2012, 28, 214-219.	2.0	69
30	Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. Journal of Materials Chemistry, 2012, 22, 17878.	6.7	66
31	Improvements and Modifications to Roomâ€Temperature Fabrication Method for Dielectric <scp>Li</scp> ₂ <scp>MoO</scp> ₄ Ceramics. Journal of the American Ceramic Society, 2015, 98, 687-689.	3.8	66
32	Magnetic-Field Induced Efficient Alignment of Carbon Nanotubes in Aqueous Solutions. Chemistry of Materials, 2007, 19, 787-791.	6.7	61
33	Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials. Journal of the European Ceramic Society, 2004, 24, 1077-1081.	5.7	56
34	Biodegradable multiphase poly(lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Composites Science and Technology, 2019, 181, 107704.	7.8	55
35	The effect of Mn on the microstructure and properties of BaSrTiO3 with B2O3–Li2CO3. Journal of the European Ceramic Society, 2005, 25, 2531-2535.	5.7	53
36	Boosting Photovoltaic Output of Ferroelectric Ceramics by Optoelectric Control of Domains. Advanced Materials, 2018, 30, e1803821.	21.0	53

#	Article	IF	CITATIONS
37	Screen printed low-sintering-temperature barium strontium titanate (BST) thick films. Journal of the European Ceramic Society, 2008, 28, 837-842.	5.7	52
38	A Frequency Tuning Method for a Planar Inverted-F Antenna. IEEE Transactions on Antennas and Propagation, 2008, 56, 944-950.	5.1	50
39	Low Temperature Sintering and Dielectric Properties of Aluminaâ€Filled Glass Composites for <scp>LTCC</scp> Applications. International Journal of Applied Ceramic Technology, 2012, 9, 52-59.	2.1	50
40	Hybrid Foam Pressure Sensor Utilizing Piezoresistive and Capacitive Sensing Mechanisms. IEEE Sensors Journal, 2017, 17, 4735-4746.	4.7	49
41	Microstructure dependent switching properties of VO2 thin films. Sensors and Actuators A: Physical, 2008, 142, 250-255.	4.1	48
42	Ba0.7Sr0.3TiO3 powders with B2O3 additive prepared by the sol–gel method for use as microwave material. Materials Science in Semiconductor Processing, 2002, 5, 215-221.	4.0	47
43	Temperature Coefficient of Microwave Resonance Frequency of a Lowâ€Temperature Cofired Ceramic (LTCC) System. Journal of the American Ceramic Society, 2002, 85, 697-699.	3.8	47
44	Structural, Dielectric, and Thermal Properties of Pb Free Molybdate Based Ultralow Temperature Glass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3897-3904.	6.7	46
45	Modification of the dielectric properties of 0–3 ceramic–polymer composites by introducing surface active agents onto the ceramic filler surface. Composite Structures, 2010, 92, 1052-1058.	5.8	45
46	Room-temperature fabrication of microwave dielectric Li2MoO4–TiO2 composite ceramics. Ceramics International, 2016, 42, 11442-11446.	4.8	45
47	Structural, infrared reflectivity spectra and microwave dielectric properties of the Li7Ti3O9F ceramic. Ceramics International, 2019, 45, 10163-10169.	4.8	44
48	RF properties of BST–PPS composites. Journal of the European Ceramic Society, 2007, 27, 2923-2926.	5.7	43
49	Printable Planar Dielectric Antennas. IEEE Transactions on Antennas and Propagation, 2016, 64, 403-413.	5.1	43
50	Ultra-low sintering temperature ceramic composites of CuMoO4 through Ag2O addition for microwave applications. Composites Part B: Engineering, 2018, 141, 214-220.	12.0	43
51	Controlled Ohmic and nonlinear electrical transport in inkjet-printed single-wall carbon nanotube films. Physical Review B, 2008, 77, .	3.2	40
52	Preparing Low-Loss Low-Temperature Cofired Ceramic Material without Glass Addition. Journal of the American Ceramic Society, 2004, 83, 2855-2857.	3.8	39
53	Microstructure-based numerical modeling method for effective permittivity of ceramic/polymer composites. Journal of Applied Physics, 2005, 97, 104104.	2.5	39
54	Dielectric BaTiO3–BBSZ glass ceramic composition with ultra-low sintering temperature. Journal of the European Ceramic Society, 2015, 35, 139-144.	5.7	39

#	Article	IF	Citations
55	Electricâ€Fieldâ€Controlled Permittivity Ferroelectric Composition for Microwave LTCC Modules. Journal of the American Ceramic Society, 2004, 87, 578-583.	3.8	37
56	Ultra-Low-Temperature Cofired Ceramic Substrates with Low Residual Carbon for Next-Generation Microwave Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23798-23807.	8.0	37
57	Tunable Microwave Phase Shifters Using <scp>LTCC</scp> Technology with Integrated <scp>BST</scp> Thick Films. International Journal of Applied Ceramic Technology, 2012, 9, 11-17.	2.1	36
58	Patterned Immobilization of Antibodies within Roll-to-Roll Hot Embossed Polymeric Microfluidic Channels. PLoS ONE, 2013, 8, e68918.	2.5	36
59	Dielectric Properties of Ultra‣ow Sintering Temperature Al ₂ O ₃ – <scp>BBSZ</scp> Glass Composite. Journal of the American Ceramic Society, 2015, 98, 1133-1136.	3.8	35
60	The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever. Mechanical Systems and Signal Processing, 2018, 106, 114-118.	8.0	34
61	Hybrid, Multi-Source, and Integrated Energy Harvesters. Frontiers in Materials, 2018, 5, .	2.4	33
62	Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects. Journal of the Korean Ceramic Society, 2019, 56, 526-533.	2.3	33
63	Roomâ€temperatureâ€densified Li ₂ MoO ₄ ceramic patch antenna and the effect of humidity. International Journal of Applied Ceramic Technology, 2017, 14, 50-55.	2.1	32
64	Li ₂ MoO ₄ â€based composite ceramics fabricated from temperature―and atmosphere―ensitive MnZn ferrite at room temperature. Journal of the American Ceramic Society, 2017, 100, 3626-3635.	3.8	32
65	Microwave dielectric properties of low-temperature sinterable α-MoO3. Journal of the European Ceramic Society, 2018, 38, 1541-1547.	5.7	32
66	Electrical and optical properties of metal-insulator-transition VO2 thin films. Journal of Electroceramics, 2009, 22, 73-77.	2.0	31
67	The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites. Physica B: Condensed Matter, 2011, 406, 4312-4316.	2.7	31
68	Piezoelectric circular diaphragm with mechanically induced pre-stress for energy harvesting. Smart Materials and Structures, 2014, 23, 085025.	3.5	30
69	Ferroelectric Oxides for Solar Energy Conversion, Multiâ€Source Energy Harvesting/Sensing, and Optoâ€Ferroelectric Applications. ChemSusChem, 2019, 12, 2540-2549.	6.8	30
70	Moderate anisotropy in the electrical conductivity of bulk MWCNT/epoxy composites. Carbon, 2010, 48, 1918-1925.	10.3	29
71	Reliability of ICA attachment of SMDs on inkjet-printed substrates. Microelectronics Reliability, 2012, 52, 2709-2715.	1.7	29
72	Compact varactor-tuned meander line monopole antenna for DVB-H signal reception. Electronics Letters, 2007, 43, 1324.	1.0	28

#	Article	IF	CITATIONS
73	Optimization of MgTiO3–CaTiO3 based LTCC tapes containing B2O3 for use in microwave applications. Ceramics International, 2005, 31, 85-93.	4.8	27
74	Piezoelectric unimorph valve assembled on an LTCC substrate. Sensors and Actuators A: Physical, 2009, 149, 315-319.	4.1	27
75	Tunable microwave devices using low-sintering-temperature screen-printed barium strontium titanate (BST) thick films. Journal of the European Ceramic Society, 2010, 30, 389-394.	5.7	27
76	Barium titanate based dielectric sintered with a two-stage process. Journal of the European Ceramic Society, 2008, 28, 2581-2588.	5.7	26
77	Tape Casting and Dielectric Properties of Zn ₂ Te ₃ O ₈ â€Based Ceramics with an Ultra‣ow Sintering Temperature. International Journal of Applied Ceramic Technology, 2009, 6, 531-536.	2.1	25
78	Combined electrical and electromechanical simulations of a piezoelectric cymbal harvester for energy harvesting from walking. Journal of Intelligent Material Systems and Structures, 2014, 25, 391-400.	2.5	25
79	Perovskite ferroelectric tuned by thermal strain. Scientific Reports, 2019, 9, 3677.	3.3	25
80	FORMULATION OF SCREEN PRINTABLE COBALT NANOPARTICLE INK FOR HIGH FREQUENCY APPLICATIONS. Progress in Electromagnetics Research, 2010, 110, 253-266.	4.4	24
81	Electromechanical properties of PZT/P(VDF-TrFE) composite ink printed on a flexible organic substrate. Composites Part B: Engineering, 2015, 80, 217-222.	12.0	24
82	Tape Casting and Dielectric Properties of Sr2ZnSi2O7-Based Ceramic-Glass Composite for Low-Temperature Co-fired Ceramics Applications. International Journal of Applied Ceramic Technology, 2011, 8, 854-864.	2.1	23
83	Effect of synthesis method variables on particle size in the preparation of homogeneous doped nano ZnO material. Microchemical Journal, 2009, 91, 272-276.	4.5	22
84	Oxygen vacancy dipoles in strained epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BaTi</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> films. Physical Review Research, 2020, 2, .	ni 3 . 6	22
85	Embedded air cavity backed microstrip antenna on an LTCC substrate. Journal of the European Ceramic Society, 2007, 27, 2881-2885.	5.7	21
86	Detection of Thermal Cycling-Induced Failures in RF/Microwave BGA Assemblies. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31, 240-247.	1.4	21
87	Layered dielectric–magnetic composite structures for Rf-applications. Composite Structures, 2010, 93, 179-183.	5.8	21
88	Chemical sensor systems for emission control from combustions. Sensors and Actuators B: Chemical, 2013, 187, 184-190.	7.8	21
89	Multilayer Functional Tapes Cofired at 450 $\hat{A}^{\circ}C$: Beyond HTCC and LTCC Technologies. ACS Applied Materials & LTCC and LTCC Technologies. ACS Applied Materials & LTCC Applied & LTCC Ap	8.0	21
90	Ultralow temperature cofired BiZn ₂ <scp>VO</scp> ₆ dielectric ceramics doped with B ₂ O ₃ and Li ₂ <scp>CO</scp> ₃ for <scp>ULTCC</scp> applications. Journal of the American Ceramic Society, 2019, 102, 1218-1226.	3.8	21

#	Article	IF	Citations
91	Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition. Ceramics International, 2021, 47, 2735-2742.	4.8	21
92	Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Research, 2021, 14, 1450-1456.	10.4	20
93	Laser-induced surface activation of LTCC materials for chemical metallization. IEEE Transactions on Advanced Packaging, 2005, 28, 259-263.	1.6	19
94	An inkjetâ€printed invertedâ€F antenna for 2.4â€GHz wrist applications. Microwave and Optical Technology Letters, 2009, 51, 2936-2938.	1.4	19
95	Fully printed memristors for a self-sustainable recorder of mechanical energy. Flexible and Printed Electronics, 2016, 1, 025002.	2.7	19
96	3D printed dielectric ceramic without a sintering stage. Scientific Reports, 2018, 8, 15955.	3.3	19
97	Upside - down composites: Fabricating piezoceramics at room temperature. Journal of the European Ceramic Society, 2019, 39, 3301-3306.	5.7	19
98	ULTCC Glass Composites Based on Rutile and Anatase with Cofiring at 400 \hat{A}° C for High Frequency Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4274-4283.	6.7	19
99	Allâ€Around Universal and Photoelastic Selfâ€Healing Elastomer with High Toughness and Resilience. Advanced Science, 2021, 8, e2103235.	11.2	19
100	BST powder with sol-gel process in tape casting and firing. Journal of the European Ceramic Society, 2004, 24, 1111-1116.	5.7	18
101	IR-wavelength optical shutter based on ITO/VO2/ITO thin film stack. Journal of Electroceramics, 2011, 27, 7-12.	2.0	18
102	Method to characterize dielectric properties of powdery substances. Journal of Applied Physics, 2013, 114, .	2.5	18
103	A co-fired LTCC–PZT monomorph bridge type acceleration sensor. Sensors and Actuators A: Physical, 2014, 216, 370-375.	4.1	18
104	BaTiO3–P(VDF-TrFE) composite ink properties for printed decoupling capacitors. Composites Part B: Engineering, 2015, 70, 201-205.	12.0	18
105	Upside-down composites: Electroceramics without sintering. Applied Materials Today, 2019, 15, 83-86.	4.3	18
106	Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5ÂGHz wi-fi antennas. Applied Materials Today, 2020, 21, 100826.	4.3	18
107	Continuous noninvasive monitoring of cell growth in disposable bioreactors. Sensors and Actuators B: Chemical, 2017, 251, 1009-1017.	7.8	17
108	Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures. Electronic Materials Letters, 2018, 14, 113-123.	2.2	17

#	Article	IF	CITATIONS
109	Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology, 2020, 31, 435203.	2.6	17
110	Locating shoreline changes in the Porttipahta (Finland) water reservoir by using multitemporal landsat data. Photogrammetria, 1984, 39, 1-12.	0.2	16
111	Multilayer BST-COC Composite with Enhanced High Frequency Dielectric Properties. Ferroelectrics, 2009, 387, 210-215.	0.6	16
112	Fabrication and properties of composites from BST and polypropylene-graft-poly(styrene-stat-divinylbenzene). Journal of the European Ceramic Society, 2010, 30, 381-384.	5.7	16
113	Manufacturing of prestressed piezoelectric unimorphs using a postfired biasing layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 838-846.	3.0	15
114	Characteristics of piezoelectric cantilevers embedded in LTCC. Journal of the European Ceramic Society, 2007, 27, 4135-4138.	5.7	15
115	Reliability of SMD interconnections on flexible low-temperature substrates with inkjet-printed conductors. Microelectronics Reliability, 2014, 54, 272-280.	1.7	15
116	Low-Loss and Wideband Package Transitions for Microwave and Millimeter-Wave MCMs. IEEE Transactions on Advanced Packaging, 2008, 31, 170-181.	1.6	14
117	Temperature characteristics and development of field-induced phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)0.87Ti0.13O3 ceramics. Applied Physics Letters, 2008, 93, 132905.	3.3	14
118	Method for measuring user-induced load on mobile terminal antenna. Electronics Letters, 2009, 45, 1065.	1.0	14
119	PERFORMANCE OF PRINTABLE ANTENNAS WITH DIFFERENT CONDUCTOR THICKNESS. Progress in Electromagnetics Research Letters, 2010, 13, 59-65.	0.7	14
120	Novel Printed Nanostructured Gas Sensors. Procedia Engineering, 2011, 25, 896-899.	1.2	14
121	Effect of surface modification on dielectric and magnetic properties of metal powder/polymer nanocomposites. Journal of Magnetism and Magnetic Materials, 2011, 323, 2281-2286.	2.3	14
122	Monomorph piezoelectric wideband energy harvester integrated into LTCC. Journal of the European Ceramic Society, 2011, 31, 789-794.	5.7	14
123	An indirectly coupled open-ended resonator applied to characterize dielectric properties of MgTiO3–CaTiO3 powders. Journal of Applied Physics, 2014, 115, .	2.5	14
124	Room temperature curable zirconium silicate dielectric ink for electronic applications. Journal of Materials Chemistry C, 2015, 3, 9240-9246.	5 . 5	14
125	Energy Harvesting with a Bimorph Type Piezoelectric Diaphragm Multilayer Structure and Mechanically Induced Preâ€stress. Energy Technology, 2016, 4, 620-624.	3.8	14
126	Sintering behavior and characteristics study of BaTiO3 with 50 wt% of B2O3-Bi2O3-SiO2-ZnO glass. Journal of the European Ceramic Society, 2017, 37, 1495-1500.	5.7	14

#	Article	IF	Citations
127	A Temperature-Responsive Copper Molybdate Polymorph Mixture near to Water Boiling Point by a Simple Cryogenic Quenching Route. ACS Applied Materials & Interfaces, 2020, 12, 1046-1053.	8.0	14
128	Microstructural and electrical properties of multicomponent varistor ceramics with PbO–ZnO–B2O3 glass addition. Journal of Electroceramics, 2007, 18, 175-181.	2.0	13
129	Thermoplastic 0–3 Ceramic–Polymer Composites With Adjustable Magnetic and Dielectric Characteristics for Radio Frequency Applications. International Journal of Applied Ceramic Technology, 2010, 7, 452-460.	2.1	13
130	Tape casting system for ULTCCs to fabricate multilayer and multimaterial 3D electronic packages with embedded electrodes. Journal of the American Ceramic Society, 2017, 100, 1257-1260.	3.8	13
131	Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics. Japanese Journal of Applied Physics, 2017, 56, 10PE01.	1.5	13
132	Multi-functional perovskites $\hat{a} \in \hat{a}$ an investigation of compositional and processing influence on microstructure, dielectric and ferroelectric properties. European Physical Journal: Special Topics, 2019, 228, 1555-1573.	2.6	13
133	Enhancement of inductance Q-factor for LTCC filter design. , 2005, , .		12
134	Thermal diffusivity of aligned multiâ€walled carbon nanotubes measured by the flash method. Physica Status Solidi (B): Basic Research, 2011, 248, 2508-2511.	1.5	12
135	Miniaturisation of dual band monopole antennas loaded with screen printed cobalt nanoparticle ink. IET Microwaves, Antennas and Propagation, 2013, 7, 180-186.	1.4	12
136	Stretchable Sensors with Tunability and Single Stimuli-Responsiveness through Resistivity Switching Under Compressive Stress. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14433-14442.	8.0	12
137	Poling Conditions of Pre-Stressed Piezoelectric Actuators and Their Displacement. Journal of Electroceramics, 2005, 15, 57-64.	2.0	11
138	Frequency-tunable DVB-H antenna for mobile terminals. , 2007, , .		11
139	Co-sintering of barium strontium titanate (BST) thick films inside a LTCC substrate with pressure-assisted sintering. Journal of the European Ceramic Society, 2008, 28, 2765-2769.	5.7	11
140	Low-Sintering-Temperature Ferroelectric-Thick Films: RF Properties and an Application in a Frequency-Tunable Folded Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 2008, 7, 461-464.	4.0	11
141	Field-induced thermal response and irreversible phase transition enthalpy change in Pb(Mg1/3Nb2/3)O3–PbTiO3. Applied Physics Letters, 2009, 94, .	3.3	11
142	Electrical and electromechanical characteristics of LTCC embedded piezoelectric bulk actuators. Advances in Applied Ceramics, 2010, 109, 135-138.	1.1	11
143	Application of Wide-Band Material Characterization Methods to Printable Electronics. IEEE Transactions on Electronics Packaging Manufacturing, 2010, 33, 221-227.	1.4	11
144	Inkjet-Printed RF Structures on BST-Polymer Composites: An Application of a Monopole Antenna for 2.4 GHz Wireless Local Area Network Operation. International Journal of Applied Ceramic Technology, 2011, 8, 940-946.	2.1	11

#	Article	IF	Citations
145	Synthesis of cobalt nanoparticles to enhance magnetic permeability of metal–polymer composites. Advanced Powder Technology, 2011, 22, 649-656.	4.1	11
146	Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	11
147	Structural, thermal and microwave dielectric properties of the novel microwave material Ba 2 TiGe 2 O 8. Ceramics International, 2018, 44, 10824-10828.	4.8	11
148	Room temperature densified ceramics for weight optimized circular polarized GPS antenna design. Microwave and Optical Technology Letters, 2018, 60, 1061-1066.	1.4	11
149	High performance piezoelectric composite fabricated at ultra low temperature. Composites Part B: Engineering, 2022, 229, 109486.	12.0	11
150	Design and measurement data for a microwave dual-CP antenna using a new traveling-wave feed concept. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 2880-2886.	4.6	10
151	Miniaturized low-loss Wilkinson power divider for RF front-end module applications. Microwave and Optical Technology Letters, 2006, 48, 660-663.	1.4	10
152	BST-COC COMPOSITE BASED RECTANGULAR DIELECTRIC RESONATOR ANTENNA (DRA) FOR 2.4 WLAN WRIST APPLICATIONS. Progress in Electromagnetics Research C, 2010, 16, 195-205.	0.9	10
153	Use of an open-ended coaxial cavity method to characterize powdery substances exposed to humidity. Applied Physics Letters, 2013, 103, .	3.3	10
154	Capability Assessment of Inkjet Printing for Reliable RFID Applications. IEEE Transactions on Device and Materials Reliability, 2017, 17, 281-290.	2.0	10
155	Application of landsat satellite data for mapping aquatic areas in north-eastern Finland. Aquatic Botany, 1985, 21, 285-294.	1.6	9
156	Multilayer resonators and a bandpass filter fabricated from a novel low-temperature co-fired ceramic. Journal of Electronic Materials, 2002, 31, 191-195.	2.2	9
157	Copper plating on and electrical investigation of a low-permittivity cycloolefin-copolymer. Polymer Testing, 2003, 22, 657-661.	4.8	9
158	Right/left-handed transmission line LTCC directional couplers. , 2007, , .		9
159	Interface circuit for resistive sensors utilizing digital potentiometers. Sensors and Actuators A: Physical, 2007, 138, 97-104.	4.1	9
160	Compensation of finger effect on a mobile terminal antenna by antenna selection., 2010,,.		9
161	Influence of Thermal-Cycling-Induced Failures on the RF Performance of Ceramic Antenna Assemblies. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 1465-1472.	2.5	9
162	Inkjet-Printed Memristor: Printing Process Development. Japanese Journal of Applied Physics, 2013, 52, 05DB21.	1.5	9

#	Article	IF	Citations
163	Printable Planar Dielectric Waveguides Based on High-Permittivity Films. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2720-2729.	4.6	9
164	Dielectric properties of novel polyurethane–PZT–graphite foam composites. Smart Materials and Structures, 2016, 25, 095039.	3.5	9
165	Sintering behavior, microstructure and dielectric performance of BaTiO3 with 60–65Âwt% addition of B2O3-Bi2O3-SiO2-ZnO glass. Journal of Alloys and Compounds, 2018, 737, 392-397.	5.5	9
166	Method for manufacturing embedded variable capacitors in low-temperature cofired ceramic substrate. Electronics Letters, 2008, 44, 94.	1.0	8
167	Electromechanical performance of structurally graded monolithic piezoelectric actuator. Journal of Electroceramics, 2009, 22, 156-162.	2.0	8
168	Application of wide-band material parameter extraction techniques to printable electronics characterization. , 2009, , .		8
169	ORGANIC-INORGANIC RF COMPOSITES WITH ENHANCED PERMITTIVITY BY NANOPARTICLE ADDITIONS. Progress in Electromagnetics Research, 2011, 115, 147-157.	4.4	8
170	UTILIZATION OF SCREEN PRINTED LOW CURING TEMPERATURE COBALT NANOPARTICLE INK FOR MINIATURIZATION OF PATCH ANTENNAS. Progress in Electromagnetics Research, 2012, 127, 427-444.	4.4	8
171	Determination of complex permittivity of surfactant treated powders using an open-ended coaxial cavity resonator. Powder Technology, 2014, 256, 140-145.	4.2	8
172	Decreasing the relative permittivity of LTCC by porosification with poly(methyl methacrylate) microspheres. Ceramics International, 2015, 41, 10871-10877.	4.8	8
173	Microwave properties of sphere-, flake-, and disc-shaped BaFe12O19 nanoparticle inks for high-frequency applications on printed electronics. Journal of Magnetism and Magnetic Materials, 2016, 419, 218-224.	2.3	8
174	The Effect of Drop Shape, Sensing Volume and Raindrop Size Statistics to the Scattered Field on 300 GHz. IEEE Access, 2021, 9, 101381-101389.	4.2	8
175	Ultra-low permittivity ULTCC composite materials. Applied Physics Letters, 2021, 118, .	3.3	8
176	$3\tilde{A}-3$ Dipole lens antenna at 300 GHz with different permittivity lenses. , 2020, , .		8
177	Failure Detection of BGA Transition Structures at High Frequencies. , 2006, , .		7
178	Design and investigation of miniaturized high-performance LTCC filters for wireless communications. , 2007, , .		7
179	Frequency-tunable planar monopole antenna for mobile terminals. , 2007, , .		7
180	Frequency-reconfigurable dual-band monopole antenna for mobile handsets., 2007,,.		7

#	Article	IF	CITATIONS
181	CAPACITIVE RECOGNITION OF THE USER'S HAND GRIP POSITION IN MOBILE HANDSETS. Progress in Electromagnetics Research B, 2010, 22, 203-220.	1.0	7
182	Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate. Journal of Electronic Materials, 2015, 44, 4884-4890.	2.2	7
183	Enhancing polarization by electrode-controlled strain relaxation in PbTiO3 heterostructures. APL Materials, 2016, 4, .	5.1	7
184	Dual Band CPW-Fed Double Monopole Antenna for 2.4/5.8 GHz ISM band Medical Applications. , 2019, , .		7
185	A SENSING DEMONSTRATION OF A SUB THZ RADIO LINK INCORPORATING A LENS ANTENNA. Progress in Electromagnetics Research Letters, 2021, 99, 119-126.	0.7	7
186	A printable P(VDF-TrFE)-PZT Composite with Very High Piezoelectric Coefficient. Applied Materials Today, 2020, 20, 100696.	4.3	7
187	Compact planar monopole antenna for 3G and UWB applications. Microwave and Optical Technology Letters, 2009, 51, 1939-1942.	1.4	6
188	A prognostic method for the embedded failure monitoring of solder interconnections with 1149.4 test bus architecture. Microelectronics Journal, 2009, 40, 1069-1080.	2.0	6
189	CAPACITIVE SENSOR ARRANGEMENT TO DETECT EXTERNAL LOAD ON A MOBILE TERMINAL ANTENNA. Progress in Electromagnetics Research Letters, 2010, 15, 13-18.	0.7	6
190	Electrical transport through single-wall carbon nanotube–anodic aluminum oxide–aluminum heterostructures. Nanotechnology, 2010, 21, 035707.	2.6	6
191	Miniature 90° and 180° Directional Couplers for Bluetooth and WLAN Applications Designed as Multilayer Microwave Integrated Circuits. Journal of Electromagnetic Waves and Applications, 2011, 25, 169-175.	1.6	6
192	Effective dielectric response of polymer composites with ceramic coated silver flakes. Journal of Materials Science: Materials in Electronics, 2013, 24, 191-195.	2.2	6
193	Preparation of α-MnMoO4 at ultra-low temperature on an organic substrate. Materials Research Bulletin, 2013, 48, 2403-2405.	5.2	6
194	Performance of LTCC embedded SiC gas sensors. Procedia Engineering, 2015, 120, 253-256.	1.2	6
195	Reflector-Backed Antenna for UWB Medical Applications with On-Body Investigations. International Journal of Antennas and Propagation, 2019, 2019, 1-17.	1.2	6
196	Solid Airâ€"Low Temperature Manufacturing of Ultra-Low Permittivity Composite Materials for Future Telecommunication Systems. Frontiers in Materials, 2019, 6, .	2.4	6
197	Effect of voids on thermomechanical cracking in lead-free Sn3Ag0.5Cu interconnections of power modules. Microelectronics Reliability, 2020, 109, 113674.	1.7	6
198	Enhancing the thermoelectric performance of cold sintered calcium cobaltite ceramics through optimised heat-treatment. Journal of the European Ceramic Society, 2022, 42, 3920-3928.	5.7	6

#	Article	IF	Citations
199	Developments in the evaluation of small lake water quality from digital Landsat MSS data, Kuusamo, Northeast Finland. Earth, Moon and Planets, 1984, 31, 249-264.	0.6	5
200	LTCC integrated airâ€filled waveguides for Gâ€band applications. Microwave and Optical Technology Letters, 2009, 51, 176-178.	1.4	5
201	High performance thin film PZT ultrasonic transducer by CSD for distance measurements in water. Journal of Electroceramics, 2011, 27, 24-28.	2.0	5
202	The effect of BaTiO 3 particle shape on complex permittivity of 0.98MgTiO 3 –0.02BaTiO 3 composite powders at GHz frequencies. Materials Research Bulletin, 2016, 76, 300-304.	5.2	5
203	Low loss polypropylene-silicon composites for millimetre wave applications. Materials Research Bulletin, 2018, 104, 143-148.	5. 2	5
204	Nanoparticle Dispersions. , 2013, , 729-776.		5
205	A Resonator Enhanced UHF RFID Antenna Cable for Inventory and Warehouse Applications. IEEE Journal of Radio Frequency Identification, 2022, 6, 128-133.	2.3	5
206	A simple method for planetary surface ruggedness estimation. The Moon and the Planets, 1983, 29, 7-13.	0.5	4
207	Mapping previously unmapped planetary surface: A supervised multispectral terrestrial/aquatic approach in northeastern Finland. Earth, Moon and Planets, 1984, 30, 295-311.	0.6	4
208	Tunable ferroelectric components in LTCC technology. , 0, , .		4
209	High performance vertical interconnections for millimeter-wave multichip modules. , 2005, , .		4
210	An X-Ray Imaging-Based Layer Alignment and Tape Deformation Inspection System for Multilayer Ceramic Circuit Boards. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31, 168-173.	1.4	4
211	Structurally Graded Monolithic Piezoelectric Actuators, Modeling and Optimization with FEM. Journal of Intelligent Material Systems and Structures, 2009, 20, 759-766.	2.5	4
212	Determination of boron and lithium in ferroelectric samples by ICP-OES and ICP-MS. Mikrochimica Acta, 2009, 164, 217-224.	5.0	4
213	MEASUREMENT METHOD FOR SENSITIVITY ANALYSIS OF PROXIMITY SENSOR AND SENSOR ANTENNA INTEGRATION IN A HANDHELD DEVICE. Progress in Electromagnetics Research C, 2011, 20, 255-268.	0.9	4
214	Multilayer low-temperature co-fired ceramic systems incorporating a thick-film printing process. , 2012, , 134-164.		4
215	FAILURE MODE CHARACTERIZATION IN INKIET-PRINTED CPW LINES UTILIZING A HIGH-FREQUENCY NETWORK ANALYZER AND POST-PROCESSED TDR ANALYSIS. Progress in Electromagnetics Research C, 2013, 43, 1-14.	0.9	4
216	Characterization of laser-sintered thick-film paste on polycarbonate substrates. Optics and Lasers in Engineering, 2014, 56, 19-27.	3.8	4

#	Article	IF	CITATIONS
217	Polymer-ceramic composite filler selection using mixing rules. Journal of Applied Physics, 2015, 117, 064103.	2.5	4
218	Microwave Characterization of Printed Inductors With Ferrimagnetic BaFe ₁₂ O ₁₉ Composite Layers. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	4
219	Characterization of PMMA/BaTiO ₃ Composite Layers Through Printed Capacitor Structures for Microwave Frequency Applications. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1736-1743.	4.6	4
220	The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0.55Sr0.45TiO3 with colossal permittivity. Journal of the European Ceramic Society, 2019, 39, 1110-1115.	5.7	4
221	Dielectric Properties of Upside-Down SrTiO3/Li2MoO4 Composites Fabricated at Room Temperature. Frontiers in Materials, 2021, 8, .	2.4	4
222	Kirigami-inspired dual-parameter tactile sensor with ultrahigh sensitivity, multimodal and strain-insensitive features. Flexible and Printed Electronics, 2021, 6, 034005.	2.7	4
223	Mobile and immobile boundaries in ferroelectric films. Scientific Reports, 2021, 11, 1899.	3.3	4
224	LOW PERMITTIVITY ENVIRONMENTALLY FRIENDLY LENSES FOR KU BAND. Progress in Electromagnetics Research Letters, 2020, 93, 1-7.	0.7	4
225	Wood-based composite materials for ultralight lens antennas in 6G systems. Materials Advances, 2022, 3, 1687-1694.	5.4	4
226	The photometric function for Saturn's rings. The Moon and the Planets, 1982, 26, 383-387.	0.5	3
227	Pulsed laser deposition and e-beam evaporation of vanadium dioxide thin films for IR-photonics applications. Proceedings of SPIE, 2007, , .	0.8	3
228	Extrinsic Influences of the Polymer Matrix on Electrical Properties of High Frequency Composites. Ferroelectrics, 2009, 387, 70-76.	0.6	3
229	BST-Polymer Composite-Based Planar Inverted-F (PIFA) Chip Antenna for 2.4 GHz Wrist Applications. Integrated Ferroelectrics, 2010, 114, 17-24.	0.7	3
230	Sintering of titanate based dielectrics doped with lithium fluoride and calcium borosilicate glass. Materials Science-Poland, 2011, 29, 29-34.	1.0	3
231	Current State of the Mixed-Signal Test Bus 1149.4. Journal of Electronic Testing: Theory and Applications (JETTA), 2012, 28, 857-863.	1.2	3
232	A piezoelectric active mirror suspension system embedded into low-temperature cofired ceramic. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1990-1995.	3.0	3
233	Triâ€bandpass filter based on two stepped impedance resonators. Microwave and Optical Technology Letters, 2012, 54, 1765-1768.	1.4	3
234	Capacitive Sensing of Antenna Loading With an R–C Voltage Divider in a Tunable Antenna. IEEE Sensors Journal, 2013, 13, 849-853.	4.7	3

#	Article	IF	CITATIONS
235	Multilayer low temperature co-fired M-type barium hexaferrites and BaO·(Nd1â^'xBix)2O3·4TiO2 dielectric ceramics. Ceramics International, 2015, 41, 12401-12406.	4.8	3
236	SiC MOSFET Soot Sensor in a Co-fired LTCC Package. Procedia Engineering, 2016, 168, 27-30.	1.2	3
237	Screenâ€printed mechanical switch based on stretchable PUâ€foam film. Electronics Letters, 2016, 52, 1395-1397.	1.0	3
238	Simulation and validation of temperature-dependent ferroelectric properties of multifunctional BCZT and KNBNNO ceramics. Materials Research Express, 2018, 5, 116305.	1.6	3
239	Approach to Fabricate Rigid Substrate for 2.4ÂGHz Inverted-F Antenna Using a Room Temperature Curable Dielectric Ink on Photo and Nanopaper. Journal of Electronic Materials, 2018, 47, 3957-3962.	2.2	3
240	Power Module Interconnection Reliability in BTS Applications. IEEE Transactions on Device and Materials Reliability, 2019, 19, 484-493.	2.0	3
241	Microwave Materials for Defense and Aerospace Applications. , 2020, , 165-213.		3
242	An Ultralight High-Directivity Ceramic Composite Lens Antenna for 220–330 GHz. IEEE Access, 2021, 9, 156592-156598.	4.2	3
243	Design and measurement data for a microwave CP antenna using a new travelling-wave feed concept. , 2005, , .		2
244	Frequency reconfigurable planar inverted-F antennas for portable wireless devices. , 2006, , .		2
245	Inverted method for fabricating a nano-aperture device with subwavelength structures. Journal of Vacuum Science & Technology B, 2009, 27, 2457.	1.3	2
246	FEASIBILITY STUDY OF ANTENNA INTEGRATED CAPACITIVE SENSOR IN OPERATIONAL MOBILE PHONE. Progress in Electromagnetics Research C, 2011, 23, 219-231.	0.9	2
247	Dielectric property of Cu powder/polymer composites. Materials Science-Poland, 2011, 29, 63-69.	1.0	2
248	Materials for Electronics by Thermal Spraying. Materials Science Forum, 2013, 762, 451-456.	0.3	2
249	LTCC, New Packaging Approach for Toxic Gas and Particle Detection. Procedia Engineering, 2015, 120, 484-487.	1.2	2
250	Facile synthesis of nanostructured carbon materials over RANEY® nickel catalyst films printed on Al2O3 and SiO2 substrates. Journal of Materials Chemistry C, 2015, 3, 1823-1829.	5.5	2
251	Aging in epitaxial ferroelectric PbTiO ₃ films. Journal of Advanced Dielectrics, 2016, 06, 1650026.	2.4	2
252	Dual Polarized Dual Fed Vivaldi Antenna for Cellular Base Station Operating at 1.7–2.7 GHz. International Journal of Antennas and Propagation, 2017, 2017, 1-8.	1.2	2

#	Article	IF	CITATIONS
253	High-Directivity Antenna for Low-UWB Body Area Networks Applications. , 2018, , .		2
254	Dielectric Losses of Microwave Ceramics Based on Crystal Structure., 0, , .		2
255	Multilayer Glass–Ceramic/Ceramic Composite Substrates. , 2021, , 437-451.		2
256	The impact of lanthanum doping on the microstructure and colossal permittivity in BaxSr(1-x)TiO3. Open Ceramics, 2021, 6, 100120.	2.0	2
257	Hybrid polar state in epitaxial (111) PbSc0.5Nb0.5O3 relaxor ferroelectric films. Physical Review Materials, 2019, 3, .	2.4	2
258	Micropositioning., 2008,, 319-340.		2
259	Enhanced piezoelectric performance of ceramic-polymer composite cantilevers with thin metal substrates. Applied Physics Letters, 2022, 120, 052903.	3.3	2
260	A Landsat-assisted study of the aquatic areas of the Lake Kemiji¿½rvi region, Northern Finland. Earth, Moon and Planets, 1984, 31, 183-216.	0.6	1
261	Effect of processing route on thermomechanical properties of low temperature firing ceramic for electronic packaging. Advances in Applied Ceramics, 2002, 101, 22-24.	0.4	1
262	Frequency reconfigurable Microstrip-Fed annular slot antenna. , 2006, , .		1
263	Frequency-Tunable Dual-Band Planar Inverted-F Antenna Based on a Switchable Parasitic Antenna Element. Frequenz, 2007, 61, .	0.9	1
264	Displacement characteristics of a monolithic PRESTO actuator with multiple active regions. Sensors and Actuators A: Physical, 2008, 148, 129-133.	4.1	1
265	Direct patterning of micro-optical structures by combined nanoimprinting and lithography. Proceedings of SPIE, 2008, , .	0.8	1
266	Low temperature microwave characterisation of greentapes using Split Post Dielectric Resonator. , 2008, , .		1
267	Application of Jacobi-Davidson algorithm to 2-D eigen-mode problems in printable electronics., 2009,,.		1
268	Wide-band Electrical Characterization of printable nano-particle copper conductors., 2009,,.		1
269	Recent Patents on Piezoelectric Energy Harvester Transducer Structures. Recent Patents on Electrical Engineering, 2010, 3, 19-24.	0.4	1
270	Orientation Dependent Dielectric Characteristics of Nanocrystalline Pb(ZrxTi1-x)O3Films with Inter Digital Electrodes. Ferroelectrics, 2010, 405, 227-235.	0.6	1

#	Article	IF	CITATIONS
271	Piezoelectric active mirror suspension embedded into Low Temperature Co-fired Ceramic., 2011,,.		1
272	Capacitive-Sensor-Induced Losses in 900-, 1800-, and 1900-MHz Antennas. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 330-333.	4.0	1
273	ERRATA TO "FORMULATION OF SCREEN PRINTABLE COBALT NANOPARTICLE INK FOR HIGH FREQUENCY APPLICATIONS" BY M. NELO, A. SOWPATI, V. K. PALUKURU, J. JUUTI, AND H. JANTUNEN, IN PROGRESS IN ELECTROMAGNETICS RESEARCH, VOL. 110, 253-266, 2010. Progress in Electromagnetics Research Letters, 2014. 50. 99-100.	0.7	1
274	ERRATA TO "UTILIZATION OF SCREEN PRINTED LOW CURING TEMPERATURE COBALT NANOPARTICLE INK FOR MINIATURIZATION OF PATCH ANTENNAS" BY M. NELO, A. SOWPATI, V. K. PALUKURU, J. JUUTI, AND H. JANTUNEN, IN PROGRESS IN ELECTROMAGNETICS RESEARCH, VOL. 127, 427-444, 2012. Progress in Electromagnetics Research Letters, 2014, 50, 101-102.	0.7	1
275	Loading efficiency equation for the estimation of dielectric properties of ceramic–polymer 0–3 composites. Materials Today Communications, 2015, 5, 60-63.	1.9	1
276	Direct integration of dielectric all-ceramic thick films on a polymer substrate using room temperature fabrication. Journal of the European Ceramic Society, 2020, 40, 3984-3988.	5.7	1
277	Resonatorâ€enhanced radiating cable for <scp>UHF RFID</scp> readers. Microwave and Optical Technology Letters, 2021, 63, 1842-1847.	1.4	1
278	Microwave Materials for Defense and Aerospace Applications. , 2019, , 1-48.		1
279	Low Temperature Sintering and Dielectric Properties of Alumina-Filled Glass Composites for LTCC Applications. International Journal of Applied Ceramic Technology, 2011, 9, n/a-n/a.	2.1	1
280	Lens antenna adjustment for telecommunication and imaging modes in a <scp>sub‶Hz</scp> radio system. Engineering Reports, 2022, 4, e12474.	1.7	1
281	Thermoplastic Laminate and Cordierite/Indialite Glass-Ceramic Hybrid Package for 15-GHz Operated Antennas. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 700-703.	2.5	1
282	Characterization of Liâ,,MoOâ,,,/BaTiOâ,f All-Ceramic Films on Organic Substrate Printed Capacitors at 45 MHz–10 GHz. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 354-361.	2.9	1
283	Two bright spots on Saturn's globe as observed by Voyager 2. The Moon and the Planets, 1983, 29, 225-228.	0.5	0
284	Laser-induced surface modification on LTCC materials for chemical metallization., 2003, 5118, 390.		0
285	Miniature front-end module based on low temperature cofired ceramics for bluetooth and WLAN wireless devices. , 2005, , .		0
286	Switching a dual-band planar inverted-F antenna to operate in eight frequency bands. , 2008, , .		0
287	Characteristics of thin film piezoelectric ultrasonic transducer array by chemical solution deposition. , 2009, , .		0
288	In-Band Frequency-Tunable Ceramic Planar Inverted-F Antenna (PIFA) Utilizing an Integrated BST-Based Variable Capacitor. Ferroelectrics, 2009, 388, 10-16.	0.6	0

#	Article	IF	CITATIONS
289	RF Properties of LTCC BST Thick Film Made by MicroPen. Ferroelectrics, 2009, 388, 17-22.	0.6	О
290	Low-Temperature Amorphous-Like Pb(ZrxTi1-x)O3for Optical Waveguiding Applications. Ferroelectrics, 2010, 405, 211-219.	0.6	0
291	Non-uniform electric field in poling of structurally graded monolithic piezoactuator. Journal of Electroceramics, 2011, 27, 20-23.	2.0	O
292	Radio Frequency Characteristics of Printed Meander Inductors and Interdigital Capacitors. Japanese Journal of Applied Physics, 2013, 52, 05DC08.	1.5	0
293	Chemical sensor systems for environmental and emission control. , 2013, , .		O
294	Printable planar dielectric passive microwave components. , 2015, , .		0
295	Development of planar dielectric passive microwave circuits and antennas. , 2016, , .		0
296	Compact Directive On-body UWB Antenna for Wireless Capsule Endoscopy Systems. , 2020, , .		О