Wangen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457449/publications.pdf

Version: 2024-02-01

361413 552781 1,785 26 20 26 citations h-index g-index papers 26 26 26 2352 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Solar Cells.	8.0	315
2	Alkali Metal Doping for Improved CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Advanced Science, 2018, 5, 1700131.	11.2	227
3	Fabrication of a Cu ₂ ZnSn(S,Se) ₄ Photovoltaic Device by a Low-Toxicity Ethanol Solution Process. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10042-10047.	8.0	130
4	Versatile and Low-Toxic Solution Approach to Binary, Ternary, and Quaternary Metal Sulfide Thin Films and Its Application in Cu2ZnSn(S,Se)4 Solar Cells. Chemistry of Materials, 2014, 26, 3098-3103.	6.7	109
5	Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Organic Electronics, 2017, 48, 165-171.	2.6	87
6	Moltenâ€Saltâ€Assisted CsPbl ₃ Perovskite Crystallization for Nearly 20%â€Efficiency Solar Cells. Advanced Materials, 2021, 33, e2103770.	21.0	81
7	Stability of the CsPbI ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	10.3	78
8	Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Materials Today Energy, 2017, 5, 205-213.	4.7	75
9	Solution-Processed Highly Efficient Cu ₂ ZnSnSe ₄ Thin Film Solar Cells by Dissolution of Elemental Cu, Zn, Sn, and Se Powders. ACS Applied Materials & Amp; Interfaces, 2015, 7, 460-464.	8.0	69
10	Metal sulfide precursor aqueous solutions for fabrication of Cu ₂ ZnSn(S,Se) ₄ thin film solar cells. Green Chemistry, 2015, 17, 1269-1275.	9.0	68
11	Path towards high-efficient kesterite solar cells. Journal of Energy Chemistry, 2018, 27, 1040-1053.	12.9	68
12	Solution-processed Cu2CdSn(S,Se)4 thin film solar cells. Solar Energy Materials and Solar Cells, 2015, 133, 15-20.	6.2	61
13	Organic–Inorganic Hybrid Perovskite with Controlled Dopant Modification and Application in Photovoltaic Device. Small, 2017, 13, 1604153.	10.0	59
14	Mn Doping of CsPbI ₃ Film Towards High-Efficiency Solar Cell. ACS Applied Energy Materials, 2020, 3, 5190-5197.	5.1	56
15	Fabrication of Cu ₂ ZnSn(S,Se) ₄ Solar Cells via an Ethanol-Based Sol–Gel Route Using SnS ₂ as Sn Source. ACS Applied Materials & Interfaces, 2014, 6, 12650-12655.	8.0	51
16	Enhanced Efficiency of Inorganic CsPbl _{3â^'} <i></i> Br <i>_x</i> Perovskite Solar Cell via Selfâ€Regulation of Antisite Defects. Advanced Energy Materials, 2021, 11, 2100403.	19.5	45
17	Airâ€Stable, Lowâ€Toxicity Precursors for Culn(SeS) ₂ Solar Cells with 10.1 % Efficiency. Energy Technology, 2013, 1, 131-134.	3.8	42
18	Defects in CsPbX ₃ Perovskite: From Understanding to Effective Manipulation for Highâ€Performance Solar Cells. Small Methods, 2021, 5, e2100725.	8.6	37

#	Article	IF	CITATION
19	Kesterite Cu ₂ Zn(Sn,Ge)(S,Se) ₄ thin film with controlled Ge-doping for photovoltaic application. Nanoscale, 2016, 8, 10160-10165.	5.6	31
20	Design of surface termination for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 23597-23606.	10.3	25
21	A straightforward chemical approach for excellent In ₂ S ₃ electron transport layer for high-efficiency perovskite solar cells. RSC Advances, 2019, 9, 884-890.	3.6	21
22	Local temperature reduction induced crystallization of MASnI ₃ and achieving a direct wafer production. RSC Advances, 2017, 7, 38155-38159.	3.6	17
23	Morphology Evolution of a Highâ€Efficiency PSC by Modulating the Vapor Process. Small, 2020, 16, e2003582.	10.0	15
24	Fabrication of a High-Quality Cu ₂ ZnSn(S,Se) ₄ Absorber Layer via an Aqueous Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process and Application in Solar Cells. ACS Applied Materials & Solution Process & Sol	8.0	9
25	Fabrication of a Cu2MnSn(S,Se)4thin film based on a low-cost degradable solution process. CrystEngComm, 2016, 18, 4744-4748.	2.6	5
26	Lowâ€Temperatureâ€Processed CdS as the Electron Selective Layer in an Organometal Halide Perovskite Photovoltaic Device. Particle and Particle Systems Characterization, 2018, 35, 1800137.	2.3	4