List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457274/publications.pdf Version: 2024-02-01

AMIR SHAMLOO

#	Article	IF	CITATIONS
1	Droplet-based microfluidics in biomedical applications. Biofabrication, 2022, 14, 022001.	7.1	50
2	Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device. Chemical Engineering Science, 2022, 252, 117283.	3.8	17
3	Modeling of an Ultrasound System in Targeted Drug Delivery to Abdominal Aortic Aneurysm: A Patient-Specific <i>in Silico</i> Study Based on Ligand–Receptor Binding. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 967-974.	3.0	9
4	Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study. Biomechanics and Modeling in Mechanobiology, 2022, 21, 735-753.	2.8	6
5	An integrative method to increase the reliability of conventional double emulsion method. Analytica Chimica Acta, 2022, 1197, 339523.	5.4	4
6	Computational study of an integrated microfluidic device for active separation of RBCs and cell lysis. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108891.	3.6	3
7	Particles in coronary circulation: A review on modelling for drug carrier design. Materials and Design, 2022, 216, 110511.	7.0	10
8	Tubular TPU/SF nanofibers covered with chitosan-based hydrogels as small-diameter vascular grafts with enhanced mechanical properties. Scientific Reports, 2022, 12, 6179.	3.3	28
9	Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis. Acta Mechanica, 2022, 233, 1881-1894.	2.1	6
10	Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials, 2022, 285, 121531.	11.4	48
11	Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochimica Acta, 2022, 189, .	5.0	21
12	In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters. Chemical Engineering Communications, 2021, 208, 976-992.	2.6	13
13	Improving the performance of a photonic PCR system using TiO2 nanoparticles. Journal of Industrial and Engineering Chemistry, 2021, 94, 195-204.	5.8	17
14	Drug delivery performance of nanocarriers based on adhesion and interaction for abdominal aortic aneurysm treatment. International Journal of Pharmaceutics, 2021, 594, 120153.	5.2	20
15	Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. International Journal of Pharmaceutics, 2021, 592, 120068.	5.2	99
16	Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques. Scientific Reports, 2021, 11, 1939.	3.3	31
17	Evaluating the Multifunctionality of a New Modulator of Zinc-Induced AÎ ² Aggregation Using a Novel Computational Approach. Journal of Chemical Information and Modeling, 2021, 61, 1383-1401.	5.4	3
18	High Haematocrit Blood Flow and Adsorption of Micro and Nanoparticles on an Atherosclerotic Plaque: An In-silico Study. Current Drug Delivery, 2021, 18, 1526-1532.	1.6	4

#	Article	IF	CITATIONS
19	Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections. Langmuir, 2021, 37, 5118-5130.	3.5	35
20	Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Micromachines, 2021, 12, 877.	2.9	36
21	Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Scientific Reports, 2021, 11, 16164.	3.3	52
22	Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential. Nanomedicine, 2021, 16, 1581-1593.	3.3	19
23	Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. International Journal of Pharmaceutics, 2021, 609, 121133.	5.2	20
24	Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study. Materials Science and Engineering C, 2021, 128, 112285.	7.3	12
25	Effect of Material and Population on the Delivery of Nanoparticles to an Atherosclerotic Plaque: A Patient-specific <i>In Silico</i> Study. Langmuir, 2021, 37, 1551-1562.	3.5	12
26	Healthy and diseased <i>in vitro</i> models of vascular systems. Lab on A Chip, 2021, 21, 641-659.	6.0	18
27	Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: A numerical study. Physics of Fluids, 2021, 33, .	4.0	33
28	Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1703-1725.	3.1	12
29	A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR. Scientific Reports, 2021, 11, 23338.	3.3	14
30	A Modified Expansion-Contraction Cavity Array with Extra Flow Regulator Applicable for Cell Manipulation. , 2021, , .		0
31	Designing and Modeling a Centrifugal Micromixer for Continuous Circulating Tumor Cells Lysis. , 2021, , .		1
32	Targeted drug delivery system using ultrasound transducers: A numerical study on stenosis artery. , 2021, , .		0
33	Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk. IEEE Transactions on Biomedical Engineering, 2020, 67, 372-378.	4.2	18
34	A comparison of different geometrical elements to model fluid wicking in paperâ€based microfluidic devices. AICHE Journal, 2020, 66, e16756.	3.6	10
35	Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method. Journal of Biomechanics, 2020, 98, 109466.	2.1	18
36	Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1143-1153.	2.8	10

#	Article	IF	CITATIONS
37	Antibody consumption reduction in lateral flow immunoassays within porous media. Chemical Engineering and Processing: Process Intensification, 2020, 147, 107773.	3.6	2
38	Effects of wax boundaries in combination with evaporation on dynamics of fluid flow in paper-based devices. Surfaces and Interfaces, 2020, 21, 100684.	3.0	3
39	Parametric Study of Droplet Formation and Characteristics Within Microfluidic Devices — A Case Study. International Journal of Applied Mechanics, 2020, 12, 2050077.	2.2	4
40	Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis. Micromachines, 2020, 11, 699.	2.9	41
41	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€aâ€Chip for Drug Screening. Small Methods, 2020, 4, 2000438.	8.6	15
42	Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 2020, 255, 120196.	11.4	117
43	Investigating the effect of reagent parameters on the efficiency of cell lysis within droplets. Physics of Fluids, 2020, 32, 062002.	4.0	18
44	3D Bioprinting of Oxygenated Cellâ€Laden Gelatin Methacryloyl Constructs. Advanced Healthcare Materials, 2020, 9, e1901794.	7.6	80
45	Microfluidicâ€Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 2020, 16, e2000171.	10.0	121
46	Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation. Materials Today Bio, 2020, 6, 100047.	5.5	14
47	Targeted Drug Delivery of Microbubble to Arrest Abdominal Aortic Aneurysm Development: A Simulation Study Towards Optimized Microbubble Design. Scientific Reports, 2020, 10, 5393.	3.3	31
48	Design of peptide-based inhibitor agent against amyloid-Î ² aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorganic Chemistry, 2020, 102, 104050.	4.1	25
49	Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres. Sensors and Actuators B: Chemical, 2020, 311, 127833.	7.8	18
50	Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits. Biophysical Reviews, 2020, 12, 123-133.	3.2	13
51	Investigation of a twoâ€step device implementing magnetophoresis and dielectrophoresis for separation of circulating tumor cells from blood cells. Engineering in Life Sciences, 2020, 20, 296-304.	3.6	29
52	Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Scientific Reports, 2020, 10, 7342.	3.3	148
53	PASylation Enhances the Stability, Potency, and Plasma Halfâ€Life of Interferon αâ€2a: A Molecular Dynamics Simulation. Biotechnology Journal, 2020, 15, e1900385.	3.5	8
54	Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Materials Science and Engineering C, 2020, 113, 110957.	7.3	72

#	Article	IF	CITATIONS
55	Dynamics of a magnetically rotated micro swimmer inspired by paramecium metachronal wave. Progress in Biophysics and Molecular Biology, 2019, 142, 32-42.	2.9	4
56	Exploring contraction–expansion inertial microfluidicâ€based particle separation devices integrated with curved channels. AICHE Journal, 2019, 65, e16741.	3.6	26
57	Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel. Analytica Chimica Acta, 2019, 1083, 137-149.	5.4	43
58	Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method. Materials Research Express, 2019, 6, 115404.	1.6	8
59	Three-Dimensional Bioprinting of Functional Skeletal Muscle Tissue Using GelatinMethacryloyl-Alginate Bioinks. Micromachines, 2019, 10, 679.	2.9	87
60	Fluid-Structure Interaction Simulation of Blood Flow and Cerebral Aneurysm: Effect of Partly Blocked Vessel. Journal of Vascular Research, 2019, 56, 296-307.	1.4	5
61	Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophysical Reviews, 2019, 11, 901-925.	3.2	50
62	Personalised deposition maps for micro- and nanoparticles targeting an atherosclerotic plaque: attributions to the receptor-mediated adsorption on the inflamed endothelial cells. Biomechanics and Modeling in Mechanobiology, 2019, 18, 813-828.	2.8	21
63	Identification of a Novel Multifunctional Ligand for Simultaneous Inhibition of Amyloid-Beta (Al² ₄₂) and Chelation of Zinc Metal Ion. ACS Chemical Neuroscience, 2019, 10, 4619-4632.	3.5	13
64	Simulation of Blood Particle Separation in a Trapezoidal Microfluidic Device by Acoustic Force. IEEE Transactions on Electron Devices, 2019, 66, 1495-1503.	3.0	22
65	A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2019, 564, 350-358.	5.2	60
66	Design and fabrication of a two-phase diamond nanoparticle aided fast PCR device. Analytica Chimica Acta, 2019, 1068, 28-40.	5.4	30
67	Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection. Sensors and Actuators B: Chemical, 2019, 283, 831-841.	7.8	38
68	In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque. International Journal of Pharmaceutics, 2019, 559, 113-129.	5.2	25
69	Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Materials Science and Engineering C, 2019, 94, 1067-1076.	7.3	84
70	Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency. Bioprocess and Biosystems Engineering, 2018, 41, 707-714.	3.4	4
71	Mechanical differences between ATP and ADP actin states: A molecular dynamics study. Journal of Theoretical Biology, 2018, 448, 94-103.	1.7	18
72	Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 194-202.	3.1	40

#	Article	IF	CITATIONS
73	Inertial particle focusing in serpentine channels on a centrifugal platform. Physics of Fluids, 2018, 30,	4.0	40
74	Nanomechanics of actin filament: A molecular dynamics simulation. Cytoskeleton, 2018, 75, 118-130.	2.0	15
75	Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International Journal of Pharmaceutics, 2018, 537, 278-289.	5.2	93
76	A novel magnetic microfluidic platform for on-chip separation of 3 types of silica coated magnetic nanoparticles (Fe3O4@SiO2). Sensors and Actuators A: Physical, 2018, 270, 223-230.	4.1	16
77	Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection. Analytica Chimica Acta, 2018, 1022, 96-105.	5.4	64
78	Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design. Biomechanics and Modeling in Mechanobiology, 2018, 17, 205-221.	2.8	26
79	Design and simulation of a microfluidic device for acoustic cell separation. Ultrasonics, 2018, 84, 234-243.	3.9	58
80	Newtonian and generalized Newtonian reacting flows in serpentine microchannels: Pressure driven and centrifugal microfluidics. Journal of Non-Newtonian Fluid Mechanics, 2018, 251, 88-96.	2.4	14
81	Comparison of the Effect of EDC and Glutaraldehyde as Cross-linkers on Morphology and Swelling Ratio of Gelatin/Chitosan Scaffolds for Use in Skin Tissue Engineering. , 2018, , .		Ο
82	Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid. Solar Energy, 2018, 173, 1236-1247.	6.1	54
83	A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 288-295.	3.1	27
84	Design and Parameter Study of Integrated Microfluidic Platform for CTC Isolation and Enquiry; A Numerical Approach. Biosensors, 2018, 8, 56.	4.7	11
85	Designing a new multifunctional peptide for metal chelation and AÎ ² inhibition. Archives of Biochemistry and Biophysics, 2018, 653, 1-9.	3.0	10
86	Dynamic analysis of magnetic nanoparticles crossing cell membrane. Journal of Magnetism and Magnetic Materials, 2017, 429, 372-378.	2.3	7
87	Fluid–structure interaction simulation of a cerebral aneurysm: Effects of endovascular coiling treatment and aneurysm wall thickening. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 72-83.	3.1	39
88	Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study. Journal of Solar Energy Engineering, Transactions of the ASME, 2017, 139, .	1.8	45
89	Molecular dynamics simulation of the dissociation mechanism of P-selectin from PSGL-1. Journal of Theoretical and Computational Chemistry, 2017, 16, 1750035.	1.8	0
90	Three-dimensional numerical simulation of a novel electroosmotic micromixer. Chemical Engineering and Processing: Process Intensification, 2017, 119, 25-33.	3.6	41

#	Article	IF	CITATIONS
91	Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell. International Journal of Energy Research, 2017, 41, 1730-1739.	4.5	50
92	Three dimensional pressure transient behavior study in stress sensitive reservoirs. Journal of Petroleum Science and Engineering, 2017, 152, 204-211.	4.2	17
93	Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation. Chemical Engineering and Processing: Process Intensification, 2017, 116, 9-16.	3.6	46
94	A sequential implicit discrete fracture model for three-dimensional coupled flow-geomechanics problems in naturally fractured porous media. Journal of Petroleum Science and Engineering, 2017, 150, 312-322.	4.2	14
95	Droplet-based flows in serpentine microchannels: Chemical reactions and secondary flows. International Journal of Multiphase Flow, 2017, 97, 186-196.	3.4	44
96	Numerical analysis of a dielectrophoresis fieldâ€flow fractionation device for the separation of multiple cell types. Journal of Separation Science, 2017, 40, 4067-4075.	2.5	44
97	Novel method for cell penetration based on MEMS technology with failure and impacting characterization of mouse ooctye membrane. Sensors and Actuators A: Physical, 2017, 263, 461-470.	4.1	3
98	Utilization of Molecular Dynamics Simulation Coupled with Experimental Assays to Optimize Biocompatibility of an Electrospun PCL/PVA Scaffold. PLoS ONE, 2017, 12, e0169451.	2.5	22
99	Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach. Biosensors, 2016, 6, 25.	4.7	34
100	Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters. Chemical Engineering and Processing: Process Intensification, 2016, 104, 243-252.	3.6	51
101	Dual improvement of DNA-directed antibody immobilization utilizing magnetic fishing and a polyamine coated surface. RSC Advances, 2016, 6, 111210-111216.	3.6	7
102	Investigation of the adhesive characteristics of polymer–protein systems through molecular dynamics simulation and their relation to cell adhesion and proliferation. Integrative Biology (United) Tj ETQq0 0	0 ng:BT /O	ve dø ck 10 Tf
103	Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: In Vitro Study. Artificial Organs, 2016, 40, 765-773.	1.9	55
104	Numerical Simulation for efficient mixing of Newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer. Chemical Engineering and Processing: Process Intensification, 2016, 107, 11-20.	3.6	41
105	Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients. Cell Biochemistry and Biophysics, 2016, 74, 241-252.	1.8	5
106	Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications, 2016, 8, .	1.5	3
107	Designing and modeling a centrifugal microfluidic device to separate target blood cells. Journal of Micromechanics and Microengineering, 2016, 26, 035017.	2.6	40
108	Numerical optimization and inverse study of a microfluidic device for blood plasma separation. European Journal of Mechanics, B/Fluids, 2016, 57, 31-39.	2.5	17

AMIR SHAMLOO

#	Article	IF	CITATIONS
109	Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach. Journal of Magnetism and Magnetic Materials, 2016, 410, 187-197.	2.3	40
110	A microfluidic device for 2D to 3D and 3D to 3D cell navigation. Journal of Micromechanics and Microengineering, 2016, 26, 015003.	2.6	5
111	The effect of rippled graphene sheet roughness on the adhesive characteristics of a collagen–graphene system. International Journal of Adhesion and Adhesives, 2016, 64, 9-14.	2.9	5
112	High throughput blood plasma separation using a passive PMMA microfluidic device. Microsystem Technologies, 2016, 22, 2447-2454.	2.0	14
113	A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches. Annals of Biomedical Engineering, 2016, 44, 929-941.	2.5	46
114	Role of α and β Transmembrane Domains in Integrin Clustering. Actuators, 2015, 4, 267-280.	2.3	1
115	Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning. Sensors, 2015, 15, 24409-24427.	3.8	13
116	A model for cell density effect on stress fiber alignment and collective directional migration. Physical Biology, 2015, 12, 066023.	1.8	5
117	MRI-guided epilepsy detection. , 2015, 2015, 4001-4.		3
118	Directional migration and differentiation of neural stem cells within three-dimensional microenvironments. Integrative Biology (United Kingdom), 2015, 7, 335-344.	1.3	19
119	A viscoelastic model for axonal microtubule rupture. Journal of Biomechanics, 2015, 48, 1241-1247.	2.1	42
120	Steered Molecular Dynamic Simulation Approaches for computing the Blood Brain Barrier (BBB) Diffusion Coefficient. IFMBE Proceedings, 2015, , 1699-1703.	0.3	1
121	Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering. Journal of Biotechnology, 2015, 212, 71-89.	3.8	45
122	Superparamagnetic Nanoparticles for Epilepsy Detection. IFMBE Proceedings, 2015, , 1237-1240.	0.3	0
123	Performance optimization of microreactors by implementing geometrical and fluid flow control in the presence of electric field: a computational study. Microsystem Technologies, 2015, 21, 1275-1285.	2.0	5
124	Modeling and simulation of crossing magnetic nanoparticles through Blood Brain Barrier (BBB). , 2014, 2014, 5280-3.		10
125	Thickness as an important parameter in designing vascular grafts. , 2014, , .		1
126	Dynamic response of axonal microtubules under suddenly applied end forces. , 2014, 2014, 6183-6.		1

Dynamic response of axonal microtubules under suddenly applied end forces. , 2014, 2014, 6183-6. 126

AMIR SHAMLOO

#	Article	IF	CITATIONS
127	Homo-oligomerization of transmembrane α-domain of integrin. , 2014, 2014, 1162-5.		1
128	Cellâ€cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis. Cytoskeleton, 2014, 71, 501-512.	2.0	20
129	Neuronal cell navigation within a microfluidic device. , 2014, , .		0
130	Plaque Structure Affects Mechanical Stress Distribution within Blood Vessels. , 2014, , .		0
131	Microfluidic Devices as In-Vitro Microenvironments for Stem Cell Culture. , 2014, , .		0
132	Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integrative Biology (United Kingdom), 2013, 5, 1076.	1.3	14
133	Mechanisms of Vascular Endothelial Growth Factor-Induced Pathfinding by Endothelial Sprouts in Biomaterials. Tissue Engineering - Part A, 2012, 18, 320-330.	3.1	49
134	Parallel in-vitro and in-vivo techniques for optimizing cellular microenvironments by implementing biochemical, biomechanical and electromagnetic stimulations. , 2012, 2012, 1397-400.		0
135	The Interplay Between Biomechanical and Biochemical Factors Regulates Lumen Formation and Navigation of Endothelial Cell Sprouts. , 2010, , .		Ο
136	Essential Regulation of CNS Angiogenesis by the Orphan G Protein–Coupled Receptor GPR124. Science, 2010, 330, 985-989.	12.6	247
137	Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab on A Chip, 2010, 10, 3061.	6.0	124
138	Paradoxical Dose-Dependent Chemoattractive and Chemorepellent Effects of Kit Ligand (KL) In Mast Cells Revealed In Novel Microfluidic Biochambers Blood, 2010, 116, 1496-1496.	1.4	0
139	Endothelial cell polarization and chemotaxis in a microfluidic device. Lab on A Chip, 2008, 8, 1292.	6.0	191
140	Extended finite element method in plasticity forming of powder compaction with contact friction. International Journal of Solids and Structures, 2006, 43, 5421-5448.	2.7	56