
Gregory A Graf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters. , 2000, 290, 1771-1775.		1,412
2	Caveolins, Liquid-Ordered Domains, and Signal Transduction. Molecular and Cellular Biology, 1999, 19, 7289-7304.	1.1	960
3	ABCG5 and ABCG8 Are Obligate Heterodimers for Protein Trafficking and Biliary Cholesterol Excretion. Journal of Biological Chemistry, 2003, 278, 48275-48282.	1.6	401
4	Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. Journal of Clinical Investigation, 2002, 110, 659-669.	3.9	252
5	SR-BII, an Isoform of the Scavenger Receptor BI Containing an Alternate Cytoplasmic Tail, Mediates Lipid Transfer between High Density Lipoprotein and Cells. Journal of Biological Chemistry, 1998, 273, 15241-15248.	1.6	201
6	The Class B, Type I Scavenger Receptor Promotes the Selective Uptake of High Density Lipoprotein Cholesterol Ethers into Caveolae. Journal of Biological Chemistry, 1999, 274, 12043-12048.	1.6	148
7	Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. Journal of Clinical Investigation, 2002, 110, 659-669.	3.9	132
8	Thematic Review Series: Lipid Transfer Proteins ABCG5 and ABCG8: more than a defense against xenosterols. Journal of Lipid Research, 2018, 59, 1103-1113.	2.0	79
9	Missense Mutations in ABCG5 and ABCG8 Disrupt Heterodimerization and Trafficking. Journal of Biological Chemistry, 2004, 279, 24881-24888.	1.6	78
10	Phytosterols differentially influence ABC transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells. Journal of Nutritional Biochemistry, 2011, 22, 777-783.	1.9	76
11	Cyclooxygenase-2 Deficiency Attenuates Adipose Tissue Differentiation and Inflammation in Mice. Journal of Biological Chemistry, 2011, 286, 889-898.	1.6	72
12	Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. Journal of Lipid Research, 2013, 54, 2775-2784.	2.0	65
13	Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the Golden Syrian hamster. Journal of Lipid Research, 2009, 50, 1146-1155.	2.0	63
14	Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. Journal of Extracellular Vesicles, 2018, 7, 1506198.	5.5	60
15	Class B Scavenger Receptors, Caveolae and Cholesterol Homeostasis. Trends in Cardiovascular Medicine, 1999, 9, 221-225.	2.3	49
16	The ABCG5 ABCG8 Sterol Transporter Opposes the Development of Fatty Liver Disease and Loss of Glycemic Control Independently of Phytosterol Accumulation. Journal of Biological Chemistry, 2012, 287, 28564-28575.	1.6	49
17	Functional Asymmetry of Nucleotide-binding Domains in ABCG5 and ABCG8. Journal of Biological Chemistry, 2006, 281, 4507-4516.	1.6	44
18	ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochemical Society Transactions, 2019, 47, 1259-1268.	1.6	39

GREGORY A GRAF

#	Article	IF	CITATIONS
19	The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16, 172-177.	1.2	38
20	Defects in the Leptin Axis Reduce Abundance of the ABCG5-ABCG8 Sterol Transporter in Liver*. Journal of Biological Chemistry, 2007, 282, 22397-22405.	1.6	35
21	New developments in selective cholesteryl ester uptake. Current Opinion in Lipidology, 2013, 24, 386-392.	1.2	34
22	17β-Estradiol promotes the up-regulation of SR-BII in HepG2 cells and in rat livers. Journal of Lipid Research, 2001, 42, 1444-1449.	2.0	33
23	ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat. Journal of Lipid Research, 2010, 51, 162-168.	2.0	31
24	Genetic Variants in <i>HSD17B3</i> , <i>SMAD3</i> , and <i>IPO11</i> Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes. Clinical Pharmacology and Therapeutics, 2018, 103, 712-721.	2.3	30
25	The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. Journal of Lipid Research, 2012, 53, 1071-1079.	2.0	27
26	Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. Journal of Nutritional Biochemistry, 2020, 76, 108263.	1.9	24
27	Sitosterolemia: Twenty Years of Discovery of the Function of ABCG5ABCG8. International Journal of Molecular Sciences, 2021, 22, 2641.	1.8	23
28	Acceleration of Biliary Cholesterol Secretion Restores Glycemic Control and Alleviates Hypertriglyceridemia in Obese <i>db</i> / <i>db</i> Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 26-33.	1.1	21
29	The combination of ezetimibe and ursodiol promotes fecal sterol excretion and reveals a G5G8-independent pathway for cholesterol elimination. Journal of Lipid Research, 2015, 56, 810-820.	2.0	13
30	GRP78 rescues the ABCG5 ABCG8 sterol transporter in db/db mice. Metabolism: Clinical and Experimental, 2015, 64, 1435-1443.	1.5	10
31	ABCG5/ABCG8-independent biliary cholesterol excretion in lactating rats. American Journal of Physiology - Renal Physiology, 2010, 299, C228-C235.	1.6	9
32	ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue. Biochemical and Biophysical Research Communications, 2015, 456, 129-134.	1.0	8
33	ABCD2 Alters Peroxisome Proliferator-Activated Receptor <i>α</i> Signaling In Vitro, but Does Not Impair Responses to Fenofibrate Therapy in a Mouse Model of Diet-Induced Obesity. Molecular Pharmacology, 2014, 86, 505-513.	1.0	7
34	Simultaneous Determination of Biliary and Intestinal Cholesterol Secretion Reveals That CETP (Cholesteryl Ester Transfer Protein) Alters Elimination Route in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1986-1995.	1.1	7
35	Effect of peripheral circadian dysfunction on metabolic disease in response to a diabetogenic diet. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E900-E911.	1.8	5
36	Metabolomics, Lipid Pathways, and Blood Pressure Change. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1801-1803.	1.1	3

#	Article	IF	CITATIONS
37	Para-bile-osis Establishes a Role for Nonbiliary Macrophage to Feces Reverse Cholesterol Transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 738-739.	1.1	2