Baran Sarac

List of Publications by Citations

Source: https://exaly.com/author-pdf/2456943/baran-sarac-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 888 14 27 g-index

77 1,163 6.4 4.53 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
65	Designing tensile ductility in metallic glasses. <i>Nature Communications</i> , 2013 , 4, 2158	17.4	135
64	Structure-property relationships in nanoporous metallic glasses. <i>Acta Materialia</i> , 2016 , 106, 199-207	8.4	77
63	Honeycomb Structures of Bulk Metallic Glasses. <i>Advanced Functional Materials</i> , 2012 , 22, 3161-3169	15.6	66
62	. Journal of Microelectromechanical Systems, 2011 , 20, 28-36	2.5	63
61	Origin of large plasticity and multiscale effects in iron-based metallic glasses. <i>Nature Communications</i> , 2018 , 9, 1333	17.4	61
60	Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites. <i>Materials and Design</i> , 2018 , 139, 132-140	8.1	36
59	Materials by design: An experimental and computational investigation on the microanatomy arrangement of porous metallic glasses. <i>Acta Materialia</i> , 2014 , 77, 411-422	8.4	32
58	From brittle to ductile: Density optimization for Zr-BMG cellular structures. <i>Scripta Materialia</i> , 2013 , 68, 921-924	5.6	22
57	Evaluation of hydrogen storage performance of ZrTiVNiCrFe in electrochemical and gas-solid reactions. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 5347-5355	6.7	22
56	Cooperative deformation behavior between the shear band and boundary sliding of an Al-based nanostructure-dendrite composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 735, 81-88	5.3	19
55	Electrosorption of Hydrogen in Pd-Based Metallic Glass Nanofilms. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2630-2646	6.1	19
54	Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glasses. <i>Materials and Design</i> , 2017 , 120, 204-211	8.1	17
53	Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses. <i>Electrocatalysis</i> , 2020 , 11, 94-109	2.7	17
52	Atomic origin for rejuvenation of a Zr-based metallic glass at cryogenic temperature. <i>Journal of Alloys and Compounds</i> , 2017 , 718, 254-259	5.7	16
51	Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping. <i>Materials Science and Engineering C</i> , 2017 , 73, 398-405	8.3	14
50	Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions <i>RSC Advances</i> , 2020 , 10, 24613-24623	3.7	14
49	Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses. <i>Scientific Reports</i> , 2016 , 6, 27271	4.9	14

48	Property optimization of porous metallic glasses via structural design. <i>Materials Letters</i> , 2014 , 134, 306	5-3150	14	
47	Activation volume and energy of bulk metallic glasses determined by nanoindentation. <i>Materials and Design</i> , 2018 , 155, 116-124	8.1	14	
46	Structural, elastic and electronic properties of CoZr in B2 and B33 structures under high pressure. Journal of Alloys and Compounds, 2017, 705, 445-455	5.7	13	
45	Structural modifications in sub-Tg annealed CuZr-based metallic glass. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 707, 245-252	5.3	13	
44	Mechanical and Structural Investigation of Porous Bulk Metallic Glasses. <i>Metals</i> , 2015 , 5, 920-933	2.3	12	
43	Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructures. <i>Materials Horizons</i> , 2019 , 6, 1481-	14874	11	
42	Micropatterning kinetics of different glass-forming systems investigated by thermoplastic net-shaping. <i>Scripta Materialia</i> , 2017 , 137, 127-131	5.6	10	
41	Tuning the glass forming ability and mechanical properties of Ti-based bulk metallic glasses by Ga additions. <i>Journal of Alloys and Compounds</i> , 2019 , 793, 552-563	5.7	10	
40	Dual self-organised shear banding behaviours and enhanced ductility in phase separating Zr-based bulk metallic glasses. <i>Philosophical Magazine</i> , 2018 , 98, 1744-1764	1.6	10	
39	Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilms. <i>Nanoscale</i> , 2020 , 12, 22586-22595	7.7	10	
38	Annealing-assisted high-pressure torsion in Zr55Cu30Al10Ni5 metallic glass. <i>Journal of Alloys and Compounds</i> , 2019 , 784, 1323-1333	5.7	10	
37	Hardening of shear band in metallic glass. <i>Scientific Reports</i> , 2017 , 7, 7076	4.9	9	
36	Interfacial structure and wear properties of selective laser melted Ti/(TiC+TiN) composites with high content of reinforcements. <i>Journal of Alloys and Compounds</i> , 2021 , 870, 159436	5.7	9	
35	Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO as an Efficient Hydrogen Sorber. <i>Chemistry - A European Journal</i> , 2020 , 26, 8244-8253	4.8	8	
34	Stability of shear banding process in bulk metallic glasses and composites. <i>Journal of Materials Research</i> , 2017 , 32, 2560-2569	2.5	8	
33	Thermally-triggered Dual In-situ Self-healing Metallic Materials. <i>Scientific Reports</i> , 2018 , 8, 2120	4.9	7	
32	Elastostatic reversibility in thermally formed bulk metallic glasses: nanobeam diffraction fluctuation electron microscopy. <i>Nanoscale</i> , 2018 , 10, 1081-1089	7.7	7	
31	Oligoether Ester-Functionalized ProDOT Copolymers on Si/Monolayer Graphene as Capacitive Thin Film Electrodes. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 070543	3.9	6	

30	Designing a multifunctional Ti-2Cu-4Ca porous biomaterial with favorable mechanical properties and high bioactivity. <i>Journal of Alloys and Compounds</i> , 2017 , 727, 338-345	5.7	6
29	Polymorphic Transformation and Magnetic Properties of Rapidly Solidified FeCoNiSiB High-Entropy Alloys. <i>Materials</i> , 2019 , 12,	3.5	6
28	Fabrication of Metastable Crystalline Nanocomposites by Flash Annealing of CuZrAl Metallic Glass Using Joule Heating. <i>Nanomaterials</i> , 2020 , 10,	5.4	5
27	Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. <i>Metals</i> , 2020 , 10, 867	2.3	5
26	Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. <i>Journal of Power Sources</i> , 2020 , 475, 228700	8.9	4
25	Effects of Ni and Co alloying on thermal, magnetic and structural properties of Fe-(Ni,Co)-P-C metallic glass ribbons. <i>Journal of Alloys and Compounds</i> , 2021 , 872, 159620	5.7	4
24	Microstructures, Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys. <i>Journal of Materials Engineering and Performance</i> , 2018 , 27, 1005-10	15 ^{1.6}	3
23	Structure-dynamics relationships in cryogenically deformed bulk metallic glass <i>Nature Communications</i> , 2022 , 13, 127	17.4	3
22	Influence of combinatorial annealing and plastic deformation treatments on the intrinsic properties of Cu46Zr46Al8 bulk metallic glass. <i>Intermetallics</i> , 2020 , 127, 106986	3.5	3
21	Effect of high pressure torsion on crystallization and magnetic properties of Fe73.9Cu1Nb3Si15.5B6.6. <i>Journal of Magnetism and Magnetic Materials</i> , 2021 , 525, 167679	2.8	3
20	Functionalized highly electron-rich redox-active electropolymerized 3,4-propylenedioxythiophenes as precursors and targets for bioelectronics and supercapacitors. <i>Molecular Systems Design and Engineering</i> , 2021 , 6, 214-233	4.6	3
19	Microfabrication: Honeycomb Structures of Bulk Metallic Glasses (Adv. Funct. Mater. 15/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 3160-3160	15.6	2
18	Thermomechanical and structural characterization of polybutadiene/poly(ethylene oxide)/ CNT stretchable electrospun fibrous membranes. <i>Polymers for Advanced Technologies</i> , 2021 , 32, 248-261	3.2	2
17	X-ray Diffraction Computed Nanotomography Applied to Solve the Structure of Hierarchically Phase-Separated Metallic Glass. <i>ACS Nano</i> , 2021 , 15, 2386-2398	16.7	2
16	Nanoporous PdtuBi Amorphous Thin Films for Electrochemical Hydrogen Storage and Sensing. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2672-2680	6.1	2
15	Enhancement of Interfacial Hydrogen Interactions with Nanoporous Gold-Containing Metallic Glass. <i>ACS Applied Materials & Discrete Mate</i>	9.5	2
14	Effect of nanoparticles on morphology and size of primary silicon and property of selective laser melted Al-high Si content alloys. <i>Vacuum</i> , 2021 , 191, 110405	3.7	2
13	Stability, elasticity and electronic structures of Co-Zr binary intermetallic compounds. <i>Philosophical Magazine</i> , 2020 , 100, 874-893	1.6	1

LIST OF PUBLICATIONS

12	Origin of Electrocatalytic Activity in Amorphous Nickel-Metalloid Electrodeposits. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	1
11	Cryo-Casting for Controlled Decomposition of CuZrAl Bulk Metallic Glass into Nanomaterials: Implications for Design Optimization. <i>ACS Applied Nano Materials</i> , 2021 , 4, 7771-7780	5.6	1
10	Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 6777-6788	6.7	О
9	Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activity. <i>Corrosion Science</i> , 2021 , 193, 109880	6.8	O
8	Deformation-Mode-Sensitive Behavior of CuZr-Based Bulk Metallic Glasses Under Dynamic Loading. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2021 , 52, 8-13	2.3	0
7	Electrospun polyacrylonitrile/2-(acryloyloxy)ethyl ferrocenecarboxylate polymer blend nanofibers. <i>Molecular Systems Design and Engineering</i> , 2021 , 6, 476-492	4.6	O
6	Effective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrode. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 086503	3.9	О
5	Porosity and thickness effect of Pdfußi metallic glasses on electrocatalytic hydrogen production and storage. <i>Materials and Design</i> , 2021 , 210, 110099	8.1	0
4	Thermoplasticity of metallic glasses: Processing and applications. <i>Progress in Materials Science</i> , 2022 , 127, 100941	42.2	0
3	Fabrication Methods of Artificial Microstructures. <i>Springer Theses</i> , 2015 , 17-28	0.1	
2	General Conclusions and Outlook. Springer Theses, 2015, 81-88	0.1	
1	Artificial Microstructure Approach. <i>Springer Theses</i> , 2015 , 37-80	0.1	