Nam Joong Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar-Driven Simultaneous Electrochemical CO2 Reduction and Water Oxidation Using Perovskite Solar Cells. Energies, 2022, 15, 270.	3.1	6
2	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	16
3	Halide Perovskites for X‑ray Detection: The Future of Diagnostic Imaging. Progress in Medical Physics, 2022, 33, 11-24.	0.3	0
4	Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587-593.	27.8	1,972
5	Ultrafast photo-induced carrier dynamics of FAPbI3-MAPbBr3 perovskite films fabricated with additives and a hole transport material. Chemical Physics Letters, 2021, 784, 139100.	2.6	4
6	Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 2020, 11, 5146.	12.8	165
7	A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000033.	5.8	22
8	Gravureâ€Printed Flexible Perovskite Solar Cells: Toward Rollâ€ŧoâ€Roll Manufacturing. Advanced Science, 2019, 6, 1802094.	11.2	115
9	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511-515.	27.8	1,867
10	A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.	39.5	1,856
11	Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356, 1376-1379.	12.6	4,721
12	Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600330.	19.5	360
13	Beneficial Effects of PbI ₂ Incorporated in Organoâ€Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502104.	19.5	387
14	Thermal Stability of CuSCN Hole Conductorâ€Based Perovskite Solar Cells. ChemSusChem, 2016, 9, 2592-2596.	6.8	154
15	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Employing Nanostructured pâ€Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015, 27, 4013-4019.	21.0	485
16	High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234-1237.	12.6	5,529
17	Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476-480.	27.8	5,478
18	Fabrication of metal-oxide-free CH ₃ NH ₃ PbI ₃ perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275.	10.3	162

Nam Joong Jeon

#	Article	IF	CITATIONS
19	<i>o</i> -Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society, 2014, 136, 7837-7840.	13.7	702
20	Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy and Environmental Science, 2014, 7, 2614-2618.	30.8	692
21	Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13, 897-903.	27.5	5,796
22	Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy and Environmental Science, 2014, 7, 2642-2646.	30.8	622
23	Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013, 1, 11842.	10.3	301
24	Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. Journal of the American Chemical Society, 2013, 135, 19087-19090.	13.7	512