Antonello Novelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456662/publications.pdf

Version: 2024-02-01

68 papers 2,772 citations

304743 22 h-index 52 g-index

70 all docs

70 docs citations

70 times ranked 2140 citing authors

#	Article	IF	CITATIONS
1	Famous faces naming test predicts conversion from mild cognitive impairment to Alzheimer's disease. Acta Neurologica Belgica, 2021, 121, 1721-1727.	1.1	2
2	Prorocentroic Acid, a Neuroactive Super-Carbon-Chain Compound from the Dinoflagellate Prorocentrum hoffmannianum. Organic Letters, 2021, 23, 13-18.	4.6	15
3	Potential neurotoxins: Okadaic acid and analogs. Advances in Neurotoxicology, 2021, 6, 193-221.	1.9	0
4	Potential neurotoxins: Palytoxins. Advances in Neurotoxicology, 2021, 6, 223-273.	1.9	0
5	Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success?. Frontiers in Neuroscience, 2021, 15, 657714.	2.8	13
6	A new and short protocol to achieve the early diagnosis of mild cognitive impairment. Neurological Sciences, 2021, 42, 3687-3694.	1.9	2
7	Early prediction of developing spontaneous activity in cultured neuronal networks. Scientific Reports, 2021, 11, 20407.	3.3	12
8	Unfolded p53 as a Marker of Oxidative Stress in Mild Cognitive Impairment, Alzheimer's and Parkinson's Disease. Current Alzheimer Research, 2021, 18, 695-700.	1.4	10
9	Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer's disease. Analytica Chimica Acta, 2020, 1093, 28-34.	5.4	40
10	Bifunctional Au@Pt/Au core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer's Disease Biomarker Detection. Analytical Chemistry, 2020, 92, 7209-7217.	6.5	38
11	Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration. Toxicological Sciences, 2018, 161, 103-114.	3.1	7
12	P2â€241: FROM BLOODâ€BASED REDOX PROFILE TO THE IDENTIFICATION OF A LEAD BIOMARKER FOR THE TIME DIAGNOSIS OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P765.	ELY 0.8	0
13	[P3–221]: A BLOODâ€BASED REDOX PROFILE AS A FINGERPRINT FOR ALZHEIMER PATHOLOGY. Alzheimer's and Dementia, 2017, 13, P1022.	d _{0.8}	O
14	[P3–227]: A NEW PUTATIVE EARLY BIOMARKER FOR A BLOODâ€BASED TIMELY DIAGNOSIS FOR ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1025.	0.8	0
15	Comparison of Extracellular and Intracellular Blood Compartments Highlights Redox Alterations in Alzheimer's and Mild Cognitive Impairment Patients. Current Alzheimer Research, 2016, 14, 112-122.	1.4	33
16	Mitochondrial Alterations in Peripheral Mononuclear Blood Cells from Alzheimer's Disease and Mild Cognitive Impairment Patients. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	50
17	P3â€170: An Open ISOFORM of P53 as an Early Biomarker of Blood Redox Alterations in Alzheimer's Disease: Development of an Easy and Reproducible Assay. Alzheimer's and Dementia, 2016, 12, P884.	0.8	0
18	Belizentrin, a Highly Bioactive Macrocycle from the Dinoflagellate <i>Prorocentrum belizeanum</i> Organic Letters, 2014, 16, 4546-4549.	4.6	38

#	Article	IF	CITATIONS
19	Comparative Toxicological Study of the Novel Protein Phosphatase Inhibitor 19-Epi-Okadaic Acid in Primary Cultures of Rat Cerebellar Cells. Toxicological Sciences, 2013, 132, 409-418.	3.1	7
20	The palytoxin analogue 42-OH-PLTX mimics the effects of palytoxin in primary neuronal cultures. Toxicology Letters, 2011, 205, S156.	0.8	2
21	Cellular and Molecular Responses of Cultured Neurons to Stressful Stimuli. Dose-Response, 2011, 9, dose-response.1.	1.6	4
22	Na ⁺ /K ⁺ â€ATPase inhibitor palytoxin enhances vulnerability of cultured cerebellar neurons to domoic acid via sodiumâ€dependent mechanisms. Journal of Neurochemistry, 2010, 114, 28-38.	3.9	21
23	Inhibition of protein phosphatases impairs the ability of astrocytes to detoxify hydrogen peroxide. Free Radical Biology and Medicine, 2008, 44, 1806-1816.	2.9	31
24	Excitatory amino acids in epilepsy: from the clinics to the laboratory. Amino Acids, 2007, 32, 295-297.	2.7	11
25	Preconditioning and neurotrophins: a model for brain adaptation to seizures, ischemia and other stressful stimuli. Amino Acids, 2007, 32, 299-304.	2.7	70
26	Nefopam is more potent than carbamazepine for neuroprotection against veratridine in vitro and has anticonvulsant properties against both electrical and chemical stimulation. Amino Acids, 2007, 32, 323-332.	2.7	16
27	Potent Neurotoxic Action of the Shellfish Biotoxin Yessotoxin on Cultured Cerebellar Neurons. Toxicological Sciences, 2006, 90, 168-177.	3.1	61
28	N-methyl-D-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. Journal of Neuroscience Research, 2005, 80, 104-113.	2.9	62
29	Introduction: Signaling in neurodegeneration (Chapter 2). Amino Acids, 2005, 28, 165-167.	2.7	1
30	Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels. Amino Acids, 2005, 28, 183-191.	2.7	48
31	Glutamate and Neurodegeneration. , 2005, , 447-472.		7
32	The Marine Toxin Dinophysistoxin-2 Induces Differential Apoptotic Death of Rat Cerebellar Neurons and Astrocytes. Toxicological Sciences, 2004, 80, 74-82.	3.1	19
33	RNA synthesis-dependent potentiation of $\hat{l}\pm$ -amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated toxicity by antihistamine terfenadine in cultured rat cerebellar neurons. Neuroscience Letters, 2003, 345, 136-140.	2.1	11
34	Neuronal Sensitization and Its Behavioral Correlates in a Rat Model of Neuropathy Are Prevented by a Cyclic Analog of Orphenadrine. Journal of Neurotrauma, 2003, 20, 593-601.	3.4	37
35	Nefopam, an analogue of orphenadrine, protects against both NMDA receptor-dependent and independent veratridine-induced neurotoxicity. Amino Acids, 2002, 23, 31-36.	2.7	35
36	Comparison of the in vitro and in vivo neurotoxicity of three new sources of kainic acid. Amino Acids, 2002, 23, 45-54.	2.7	10

#	Article	IF	Citations
37	Antihistamine terfenadine inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of L-type voltage sensitive calcium channels. Neurotoxicity Research, 2002, 4, 15-23.	2.7	14
38	Novel effect of nefopam preventing cGMP increase, oxygen radical formation and neuronal death induced by veratridine. Neuropharmacology, 2001, 41, 935-942.	4.1	22
39	Nuclear factor κB is a critical determinant in N-methyl-d-aspartate receptor-mediated neuroprotection. Journal of Neurochemistry, 2001, 78, 254-264.	3.9	155
40	Antihistamine terfenadine potentiates NMDA receptor-mediated calcium influx, oxygen radical formation, and neuronal death. Brain Research, 2000, 880, 17-27.	2.2	24
41	NMDA receptor dependent and independent components of veratridine toxicity in cultured cerebellar neurons are prevented by nanomolar concentrations of terfenadine. Amino Acids, 2000, 19, 263-272.	2.7	9
42	Terfenadine induces toxicity in cultured cerebellar neurons: A role for glutamate receptors. Amino Acids, 1999, 16, 59-70.	2.7	10
43	Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Research, 1999, 835, 125-136.	2.2	125
44	Terfenadine prevents NMDA receptor-dependent and -independent toxicity following sodium channel activation. Brain Research, 1999, 842, 478-481.	2.2	13
45	The development of oxidative metabolism in diencephalic structures of the rat: A quantitative study. Brain Research Bulletin, 1996, 41, 31-38.	3.0	12
46	Inhibition of protein phosphatases induces IGF-1-blocked neurotrophin-insensitive neuronal apoptosis. FEBS Letters, 1996, 398, 106-112.	2.8	45
47	Two components in neurotoxicity by L-2-amino-3-phosphonopropionate in cultured cerebellar neurons. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1994, 270, 361-364.	0.8	1
48	Basic fibroblast growth factor protects cerebellar neurons in primary culture from NMDA and non-NMDA receptor mediated neurotoxicity. FEBS Letters, 1993, 335, 124-131.	2.8	78
49	Excitatory amino acid response in cultured rat striatal neurons results in a developmentally regulated cGMP formation. International Journal of Developmental Neuroscience, 1993, 11, 425-434.	1.6	3
50	Neurotoxic Effect of Okadaic Acid, A Seafood-related Toxin, on Cultured Cerebellar Neurons. Annals of the New York Academy of Sciences, 1993, 679, 260-269.	3.8	18
51	Domoic acid-containing toxic mussels produce neurotoxicity in neuronal cultures through a synergism between excitatory amino acids. Brain Research, 1992, 577, 41-48.	2.2	81
52	The amnesic shellfish poison domoic acid enhances neurotoxicity by excitatory amino acids in cultured neurons. Amino Acids, 1992, 2, 233-244.	2.7	7
53	The marine toxin okadaic acid is a potent neurotoxin for cultured cerebellar neurons. Life Sciences, 1991, 49, PL157-PL162.	4.3	48
54	DL-threo-3-hydroxyaspartate reduces NMDA receptor activation by glutamate in cultured neurons. European Journal of Pharmacology, 1991, 194, 131-132.	3.5	22

#	Article	IF	CITATIONS
55	Development of voltage-dependent ionic currents in rat cerebellar granule cells grown in primaryculture. International Journal of Neuroscience, 1991, 56, 193-200.	1.6	20
56	Neurotoxicity at the Nâ€Methylâ€Dâ€Aspartate Receptor in Energyâ€Compromised Neurons An Hypothesis for Cell Death in Aging and Disease. Annals of the New York Academy of Sciences, 1989, 568, 225-233.	3.8	163
57	Developmental induction of glutaminase in primary cultures of cerebellar granule cells. Molecular Brain Research, 1989, 6, 47-54.	2.3	20
58	Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Research, 1988, 451, 205-212.	2.2	973
59	cGMP synthesis in cultured cerebellar neurons is stimulated by glutamate via a Ca2+-mediated, differentiation-dependent mechanism. Developmental Brain Research, 1987, 34, 307-310.	1.7	116
60	Uptake of imipramine in neurons cultured from rat cerebellum. Brain Research, 1987, 411, 291-297.	2.2	20
61	Evaluation of hypothalamic dopaminergic function by neuropharmacologic means in aged women. Journal of Neural Transmission, 1985, 64, 199-210.	2.8	0
62	Prolactin and thyrotropin response to blockade of dopamine synthesis by monoiodotyrosine in subjects with postpartum and pathological hyperprolactinemia. Journal of Endocrinological Investigation, 1985, 8, 35-40.	3.3	5
63	Veratrine- and glutamate-stimulated cGMP production in cultured rat neurons is differentially inhibited by imipramine. European Journal of Pharmacology, 1985, 118, 189-190.	3.5	5
64	In vivo Supersensitivity of the Anterior Pituitary of Old Female Rats to Dopaminergic Inhibition of Prolactin Secretion. Gerontology, 1984, 30, 345-349.	2.8	8
65	Hypothalamic neurotransmitter function in experimentally induced hyperprolactinemia. Brain Research, 1984, 324, 233-241.	2.2	4
66	Evaluation of Tuberoinfundibular Dopamine Function by Neuropharmacologic Means in Old Male Rats. Gerontology, 1983, 29, 362-369.	2.8	6
67	Thyrotrophin and prolactin responses to thyrotrophin-releasing hormone in patients with Parkinson's disease. European Journal of Endocrinology, 1982, 99, 344-351.	3.7	15
68	Growth hormone and prolactin stimulation by Madopar in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 1981, 44, 1116-1123.	1.9	14