
Virendra Kumar Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456526/publications.pdf Version: 2024-02-01

VIDENDDA KUMAD MISHDA

#	Article	IF	CITATIONS
1	Mechanisms controlling major ion chemistry and its suitability for irrigation of Narmada River, India. Water Science and Technology: Water Supply, 2022, 22, 3224-3241.	2.1	3
2	Unravelling the emerging threats of microplastics to agroecosystems. Reviews in Environmental Science and Biotechnology, 2022, 21, 771-798.	8.1	22
3	Application of constructed wetland; a natural treatment system for environmentally sustainable domestic sewage treatment. , 2021, , 105-129.		6
4	Ethnomedicinal applications of forest plants for the treatment of common ailments by Gond and Madia tribes of Maharashtra, India. Environmental Sustainability, 2021, 4, 123-142.	2.8	0
5	Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 2021, 31, .	4.2	29
6	Water quality assessment of Narmada River along the different topographical regions of the central India. Water Science, 2020, 34, 202-212.	1.6	13
7	Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: a field-scale study. Water Practice and Technology, 2020, 15, 528-539.	2.0	14
8	Phytoremediation of Heavy Metals From Mixed Domestic Sewage Through Vertical- Flow Constructed Wetland Planted with Canna Indica and Acorus Calamus. Current World Environment Journal, 2020, 15, 430-440.	0.5	4
9	Application of horizontal flow constructed wetland and solar driven disinfection technologies for wastewater treatment in India. Water Practice and Technology, 2018, 13, 469-480.	2.0	20
10	Metal uptake potential of four methylotrophic bacterial strains from coal mine spoil, exploring a new possible agent for bioremediation. Environmental Technology and Innovation, 2018, 11, 174-186.	6.1	9
11	Aquatic Macrophytes for the Removal of Heavy Metals from Coal Mining Effluent. , 2016, , 143-156.		1
12	Environmental Determinants of Soil Methane Oxidation and Methanotrophs. Critical Reviews in Environmental Science and Technology, 2013, 43, 1945-2011.	12.8	54
13	Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia) Tj ETQq1 1 0.784	1314 rgBT 12.4	/Overlock 10
14	Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 2009, 172, 749-754.	12.4	67
15	Accumulation of Cadmium and Copper from Aqueous Solutions Using Indian Lotus (Nelumbo) Tj ETQq1 1 0.784	314. <u>r</u> gBT	Overlock 10
16	Phytoremediation of Mercury and Arsenic from Tropical Opencast Coalmine Effluent Through Naturally Occurring Aquatic Macrophytes. Water, Air, and Soil Pollution, 2008, 192, 303-314.	2.4	60
17	Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment, 2008, 141, 49-58.	2.7	95
18	Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 2008, 99, 930-936.	9.6	166

#	Article	IF	CITATIONS
19	Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 2008, 99, 7091-7097.	9.6	307