Kenneth Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245629/publications.pdf Version: 2024-02-01

		10373	12258
178	19,270	72	133
papers	citations	h-index	g-index
183	183	183	12878
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 1996, 383, 495-501.	13.7	1,367
2	Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 1994, 371, 123-129.	13.7	1,270
3	High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. PLoS ONE, 2011, 6, e28983.	1.1	782
4	What controls dissolved iron concentrations in the world ocean?. Marine Chemistry, 1997, 57, 137-161.	0.9	734
5	Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters. Science, 2004, 304, 408-414.	6.0	546
6	The integral role of iron in ocean biogeochemistry. Nature, 2017, 543, 51-59.	13.7	482
7	The flux of iron from continental shelf sediments: A missing source for global budgets. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	404
8	Unicellular Cyanobacterial Distributions Broaden the Oceanic N ₂ Fixation Domain. Science, 2010, 327, 1512-1514.	6.0	394
9	Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochimica Et Cosmochimica Acta, 1998, 62, 3453-3473.	1.6	346
10	Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature, 1999, 398, 697-700.	13.7	346
11	Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 1994, 371, 145-149.	13.7	332
12	Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature, 1996, 379, 621-624.	13.7	311
13	In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1291-1305.	0.6	278
14	Testing the Honeywell Durafet \hat{A}^{\otimes} for seawater pH applications. Limnology and Oceanography: Methods, 2010, 8, 172-184.	1.0	241
15	Developing Standards for Dissolved Iron in Seawater. Eos, 2007, 88, 131.	0.1	237
16	On the Future of Argo: A Clobal, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 2019, 6, .	1.2	235
17	Carbon dioxide hydration and dehydration kinetics in seawater1. Limnology and Oceanography, 1982, 27, 849-855.	1.6	233
18	Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature, 2010, 465, 1062-1065.	13.7	225

Kenneth Johnson

#	Article	IF	CITATIONS
19	Phosphorus regeneration in continental margin sediments. Geochimica Et Cosmochimica Acta, 1997, 61, 2891-2907.	1.6	201
20	Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1723-1744.	1.6	200
21	A model of the iron cycle in the ocean. Global Biogeochemical Cycles, 2000, 14, 269-279.	1.9	193
22	Net production of oxygen in the subtropical ocean. Nature, 2008, 451, 323-325.	13.7	190
23	Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 2017, 122, 6416-6436.	1.0	190
24	Iron photochemistry in seawater from the equatorial Pacific. Marine Chemistry, 1994, 46, 319-334.	0.9	189
25	Determination of subnanomolar levels of iron(II) and total dissolved iron in seawater by flow injection and analysis with chemiluminescence detection. Analytical Chemistry, 1991, 63, 893-898.	3.2	187
26	Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 3159-3179.	0.6	184
27	In Situ Measurements of Chemical Distributions in a Deep-Sea Hydrothermal Vent Field. Science, 1986, 231, 1139-1141.	6.0	179
28	Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array. Oceanography, 2009, 22, 216-225.	0.5	171
29	Chemical Sensor Networks for the Aquatic Environment. Chemical Reviews, 2007, 107, 623-640.	23.0	163
30	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	1.7	160
31	Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochimica Et Cosmochimica Acta, 1987, 51, 1345-1363.	1.6	158
32	Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1711-1721.	1.6	157
33	Ocean Iron FertilizationMoving Forward in a Sea of Uncertainty. Science, 2008, 319, 162-162.	6.0	156
34	Determination of phosphate in seawater by flow injection analysis with injection of reagent. Analytical Chemistry, 1982, 54, 1185-1187.	3.2	155
35	Observing the Global Ocean with Biogeochemical-Argo. Annual Review of Marine Science, 2020, 12, 23-48.	5.1	155
36	Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography, 2014, 9, 44-60.	1.5	150

#	Article	IF	CITATIONS
37	Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15313-15318.	3.3	146
38	Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High‣atitude Southern Ocean. Geophysical Research Letters, 2018, 45, 9049-9057.	1.5	138
39	Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 635-653.	0.6	136
40	Iron distributions in the equatorial Pacific: Implications for new production. Limnology and Oceanography, 1997, 42, 419-431.	1.6	135
41	Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters. Analytical Chemistry, 2001, 73, 3481-3487.	3.2	134
42	Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnology and Oceanography, 2007, 52, 1317-1327.	1.6	129
43	Determination of nitrate and nitrite in seawater by flow injection analysis1. Limnology and Oceanography, 1983, 28, 1260-1266.	1.6	127
44	Fluxes of dissolved organic carbon from California continental margin sediments. Geochimica Et Cosmochimica Acta, 1999, 63, 1507-1515.	1.6	126
45	A time series of benthic flux measurements from Monterey Bay, CA. Continental Shelf Research, 2003, 23, 457-481.	0.9	122
46	Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at the Rose Garden vent on the Galapagos Rift. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1769-1791.	1.6	120
47	Biogenic matter diagenesis on the sea floor: A comparison between two continental margin transects. Journal of Marine Research, 1996, 54, 731-762.	0.3	120
48	Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks. Analytical Chemistry, 2016, 88, 3249-3256.	3.2	114
49	Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 2020, 1, 315-326.	12.2	114
50	Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	104
51	Calculating surface ocean pCO ₂ from biogeochemical Argo floats equipped with pH: An uncertainty analysis. Global Biogeochemical Cycles, 2017, 31, 591-604.	1.9	104
52	Submersible, Osmotically Pumped Analyzer for Continuous Determination of Nitrate in situ. Analytical Chemistry, 1994, 66, 3352-3361.	3.2	103
53	Manganese Flux from Continental Margin Sediments in a Transect Through the Oxygen Minimum. Science, 1992, 257, 1242-1245.	6.0	102
54	On the formation of the manganese maximum in the oxygen minimum. Geochimica Et Cosmochimica Acta, 1996, 60, 1291-1299.	1.6	100

#	Article	IF	CITATIONS
55	Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean. Frontiers in Marine Science, 2018, 4, .	1.2	100
56	A submersible flow analysis system. Analytica Chimica Acta, 1986, 179, 245-257.	2.6	96
57	Determination of reactive silicate in seawater by flow injection analysis. Analytical Chemistry, 1983, 55, 2378-2382.	3.2	95
58	Reassessing Southern Ocean Air‣ea CO ₂ Flux Estimates With the Addition of Biogeochemical Float Observations. Global Biogeochemical Cycles, 2019, 33, 1370-1388.	1.9	95
59	Long-Term Nitrate Measurements in the Ocean Using the in situ Ultraviolet Spectrophotometer: Sensor Integration into the APEX Profiling Float. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1854-1866.	0.5	92
60	Determination of picomolar levels of cobalt in seawater by flow injection analysis with chemiluminescence detection. Analytical Chemistry, 1987, 59, 1789-1794.	3.2	89
61	Manganese and iron distributions off central California influenced by upwelling and shelf width. Marine Chemistry, 2005, 95, 235-254.	0.9	88
62	Measurements of nitrite production in and around the primary nitrite maximum in the central California Current. Biogeosciences, 2013, 10, 7395-7410.	1.3	87
63	The Argo Program: Present and Future. Oceanography, 2017, 30, 18-28.	0.5	86
64	A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 2019, 6,	1.2	86
65	Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 995-1015.	0.6	85
66	Interrelationships among primary production, chlorophyll, and environmental conditions in frontal regions of the western Mediterranean Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 793-810.	1.6	84
67	A decadal record of underflows from a coastal river into the deep sea. Geology, 2001, 29, 1019.	2.0	84
68	Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnology and Oceanography: Methods, 2009, 7, 132-143.	1.0	83
69	Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations. Geochimica Et Cosmochimica Acta, 1997, 61, 4945-4954.	1.6	80
70	A rapid, highly sensitive technique for the determination of ammonia in seawater. Marine Biology, 1986, 91, 285-290.	0.7	79
71	Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 993-1011.	0.6	78
72	Solubility of rhodochrosite (MnCO3) in water and seawater. Geochimica Et Cosmochimica Acta, 1982, 46, 1805-1809.	1.6	76

#	Article	IF	CITATIONS
73	A climatology-based quality control procedure for profiling float oxygen data. Journal of Geophysical Research: Oceans, 2013, 118, 5640-5650.	1.0	76
74	In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature, 1991, 352, 325-328.	13.7	75
75	The behaviour of iron and other trace elements during the IronEx-I and PlumEx experiments in the Equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 995-1041.	0.6	72
76	Diel nitrate cycles observed with in situ sensors predict monthly and annual new production. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 561-573.	0.6	71
77	Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks. Frontiers in Marine Science, 2017, 4, .	1.2	71
78	Air Oxygen Calibration of Oxygen Optodes on a Profiling Float Array. Journal of Atmospheric and Oceanic Technology, 2015, 32, 2160-2172.	0.5	70
79	Influence of Rossby waves on nutrient dynamics and the plankton community structure in the North Pacific subtropical gyre. Journal of Geophysical Research, 2004, 109, .	3.3	68
80	Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?. Global Biogeochemical Cycles, 2001, 15, 61-63.	1.9	63
81	Applications of in situ pH measurements for inorganic carbon calculations. Marine Chemistry, 2011, 125, 82-90.	0.9	63
82	Variation in the hydrothermal vent clam, Calyptogen magnifica, at the Rose Garden vent on the Galapagos spreading center. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1811-1831.	1.6	62
83	In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 4969-4984.	3.3	61
84	Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnology and Oceanography, 2008, 53, 2094-2111.	1.6	61
85	Coastal Ocean Physics and Red Tides: An Example from Monterey Bay, California. Oceanography, 2005, 18, 246-255.	0.5	60
86	lronEx-I, an in situ iron-enrichment experiment: Experimental design, implementation and results. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 919-945.	0.6	59
87	The annual cycle of iron and the biological response in central California coastal waters. Geophysical Research Letters, 2001, 28, 1247-1250.	1.5	58
88	Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats. Global Biogeochemical Cycles, 2016, 30, 859-879.	1.9	58
89	Hydrogen peroxide in the western Mediterranean Sea: a tracer for vertical advection. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 241-254.	1.6	57
90	NH4â€Ðigiscan: an in situ and laboratory ammonium analyzer for estuarine, coastal, and shelf waters. Limnology and Oceanography: Methods, 2009, 7, 144-156.	1.0	57

#	Article	IF	CITATIONS
91	Determination of copper in sea water using a flow-injection method with chemiluminescence detection. Analytica Chimica Acta, 1992, 266, 345-351.	2.6	56
92	What controls dissolved iron concentrations in the world ocean? Authors' closing comments. Marine Chemistry, 1997, 57, 181-186.	0.9	54
93	Input and cycling of iron in the Gulf of Aqaba, Red Sea. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	54
94	Annual nitrate drawdown observed by <scp>SOCCOM</scp> profiling floats and the relationship to annual net community production. Journal of Geophysical Research: Oceans, 2017, 122, 6668-6683.	1.0	54
95	Characterization of an Ion Sensitive Field Effect Transistor and Chloride Ion Selective Electrodes for pH Measurements in Seawater. Analytical Chemistry, 2014, 86, 11189-11195.	3.2	53
96	Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system. Continental Shelf Research, 2003, 23, 1523-1544.	0.9	51
97	Solenoid Pumps for Flow Injection Analysis. Analytical Chemistry, 1996, 68, 2717-2719.	3.2	50
98	Influence of mica surfaces on pore-water pH. Chemical Geology, 1984, 43, 303-317.	1.4	49
99	Cobalt and copper distributions in the waters of Santa Monica Basin, California. Nature, 1988, 332, 527-530.	13.7	49
100	Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Analytica Chimica Acta, 1998, 377, 133-144.	2.6	49
101	Nitrate sources and sinks in Elkhorn Slough, California: Results from long-term continuous in situ nitrate analyzers. Estuaries and Coasts, 2004, 27, 882-894.	1.7	48
102	Empirical algorithms to estimate water column pH in the Southern Ocean. Geophysical Research Letters, 2016, 43, 3415-3422.	1.5	48
103	The solubility of calcite — probably containing magnesium — in seawater. Marine Chemistry, 1980, 10, 9-29.	0.9	47
104	Rapid determination of manganese in sea water by flow-injection analysis with chemiluminescence detection. Analytica Chimica Acta, 1991, 249, 469-478.	2.6	47
105	When Mixed Layers Are Not Mixed. Stormâ€Driven Mixing and Bioâ€optical Vertical Gradients in Mixed Layers of the Southern Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 7264-7289.	1.0	47
106	GEOCHEMISTRY: Manganese Redox Chemistry Revisited. Science, 2006, 313, 1896-1897.	6.0	46
107	Determination of Zinc in Seawater Using Flow Injection Analysis with Fluorometric Detection. Analytical Chemistry, 1994, 66, 2732-2738.	3.2	45
108	Differential Distributions of Synechococcus Subgroups Across the California Current System. Frontiers in Microbiology, 2011, 2, 59.	1.5	45

#	Article	IF	CITATIONS
109	Benthic manganese fluxes along the Oregon–California continental shelf and slope. Continental Shelf Research, 2012, 43, 71-85.	0.9	45
110	Spectrophotometric determination of dissolved manganese in natural waters with 1-(2-pyridylazo)-2-naphthol: application to analysis in situ in hydrothermal plumes. Marine Chemistry, 1992, 37, 65-82.	0.9	43
111	Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean From Persistent Observational Platforms. Journal of Geophysical Research: Oceans, 2018, 123, 4833-4852.	1.0	42
112	Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nature Geoscience, 2020, 13, 35-42.	5.4	42
113	An evaluation of ISFET sensors for coastal pH monitoring applications. Regional Studies in Marine Science, 2017, 12, 11-18.	0.4	41
114	Determination of cadmium in seawater using automated on-line preconcentration and direct injection graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 1998, 377, 255-262.	2.6	40
115	The Land/Ocean Biogeochemical Observatory: A robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnology and Oceanography: Methods, 2008, 6, 263-276.	1.0	40
116	Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 93, 119-134.	0.6	39
117	Determination of total primary amines in seawater and plant nectar with flow injection sample processing and fluorescence detection. Analytica Chimica Acta, 1982, 142, 299-304.	2.6	38
118	Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air‣ea Fluxes. Journal of Geophysical Research: Oceans, 2017, 122, 8661-8682.	1.0	38
119	In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems. Analytica Chimica Acta, 2002, 463, 265-274.	2.6	37
120	Continuous determination of nitrate concentrations in situ. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 1407-1413.	1.6	36
121	Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications. Marine Chemistry, 2018, 207, 108-123.	0.9	36
122	Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satelliteâ€Based Net Primary Production. Journal of Geophysical Research: Oceans, 2018, 123, 2945-2964.	1.0	35
123	Bringing Biogeochemistry into the Argo Age. Eos, 2016, , .	0.1	35
124	Flow-Injection Analysis for Seawater Micronutrients. Advances in Chemistry Series, 1985, , 7-30.	0.6	34
125	Determination of hydrogen sulfide in seawater using flow injection analysis and flow analysis1. Limnology and Oceanography, 1986, 31, 894-900.	1.6	34
126	Ion association of chloride and sulphate with sodium, potassium, magnesium and calcium in seawater at 25°C. Marine Chemistry, 1979, 8, 87-93.	0.9	33

#	Article	IF	CITATIONS
127	A longâ€term, highâ€resolution record of surface water iron concentrations in the upwellingâ€driven central California region. Journal of Geophysical Research, 2008, 113, .	3.3	32
128	Oxygen Variability Controls Denitrification in the Bay of Bengal Oxygen Minimum Zone. Geophysical Research Letters, 2019, 46, 804-811.	1.5	31
129	Constraint on net primary productivity of the global ocean by Argo oxygen measurements. Nature Geoscience, 2021, 14, 769-774.	5.4	31
130	Reagent-injection flow analysis: application to the determination of nanomolar levels of hydrogen peroxide in seawater. Analytica Chimica Acta, 1987, 201, 83-94.	2.6	30
131	Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models. Journal of Geophysical Research: Oceans, 2018, 123, 3120-3143.	1.0	29
132	Is Ocean Fertilization Credible and Creditable?. Science, 2002, 296, 467b-468.	6.0	28
133	Mapping the spatial variability of plankton metabolism using nitrate and oxygen sensors on an autonomous underwater vehicle. Limnology and Oceanography, 2008, 53, 2237-2250.	1.6	27
134	Understanding the Dynamics of the Oxicâ€Anoxic Interface in the Black Sea. Geophysical Research Letters, 2018, 45, 864-871.	1.5	27
135	Assessment of pH dependent errors in spectrophotometric pH measurements of seawater. Marine Chemistry, 2020, 223, 103801.	0.9	26
136	Southern Ocean Biogeochemical Float Deployment Strategy, With Example From the Greenwich Meridian Line (GOâ€5HIP A12). Journal of Geophysical Research: Oceans, 2019, 124, 403-431.	1.0	25
137	Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the Redfield Ratio in real time. Limnology and Oceanography, 2010, 55, 615-627.	1.6	24
138	Lessons learned from an ecosystem-based management approach to restoration of a California estuary. Marine Policy, 2015, 58, 60-70.	1.5	23
139	Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats. Journal of Geophysical Research: Oceans, 2018, 123, 746-758.	1.0	23
140	Assessment of Autonomous pH Measurements for Determining Surface Seawater Partial Pressure of CO 2. Journal of Geophysical Research: Oceans, 2018, 123, 4003-4013.	1.0	22
141	Wood chip denitrification bioreactors can reduce nitrate in tile drainage. California Agriculture, 2017, 71, 41-47.	0.5	21
142	Supercooled Southern Ocean Waters. Geophysical Research Letters, 2020, 47, e2020GL090242.	1.5	21
143	Biological production and the exchange of oxygen and carbon dioxide across the sea surface in Stuart Channel, British Columbia1. Limnology and Oceanography, 1979, 24, 474-482.	1.6	20
144	Analytical chemistry and oceanography. Analytical Chemistry, 1992, 64, 1065A-1075A.	3.2	20

9

#	Article	IF	CITATIONS
145	Nitrate and oxygen flux across the sedimentâ€water interface observed by eddy correlation measurements on the open continental shelf. Limnology and Oceanography: Methods, 2011, 9, 543-553.	1.0	20
146	Delayed-Mode Quality Control of Oxygen, Nitrate, and pH Data on SOCCOM Biogeochemical Profiling Floats. Frontiers in Marine Science, 2021, 8, .	1.2	20
147	The calculation of ion pair diffusion coefficients: A comment. Marine Chemistry, 1981, 10, 195-208.	0.9	19
148	Organic matter diagenesis in the sediments of the San Pedro Shelf along a transect affected by sewage effluent. Continental Shelf Research, 2002, 22, 1101-1115.	0.9	18
149	Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the Redfield Ratio in real time. Limnology and Oceanography, 2010, 55, 615-627.	1.6	18
150	Analytical Chemistry in Oceanography. Analytical Chemistry, 1992, 64, 1065A-1075A.	3.2	17
151	Fortnightly Tidal Modulations Affect Net Community Production in a Mesotidal Estuary. Estuaries and Coasts, 2014, 37, 91-110.	1.0	17
152	The activity of NaCl in seawater of 10–40‰ salinity and 5–25°C at 1 atmosphere. Marine Chemistry, 1981, 10, 85-91.	0.9	16
153	Determination of carbonate ion concentration and inner sphere carbonate ion pairs in seawater by ultraviolet spectrophotometric titration. Marine Chemistry, 2009, 115, 145-154.	0.9	16
154	A validation and comparison study of new, compact, versatile optodes for oxygen, pH and carbon dioxide in marine environments. Marine Chemistry, 2018, 207, 63-76.	0.9	16
155	Pressure correction for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnology and Oceanography: Methods, 2017, 15, 897-902.	1.0	15
156	Accurate pH and O2 Measurements from Spray Underwater Gliders. Journal of Atmospheric and Oceanic Technology, 2021, 38, 181-195.	0.5	15
157	Indoâ€Pacific Sector Dominates Southern Ocean Carbon Outgassing. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
158	Cadmium Flux in Los Angeles/Long Beach Harbours and at Sites along the California Continental Margin. Estuarine, Coastal and Shelf Science, 2001, 53, 169-180.	0.9	12
159	Workshop highlights iron dynamics in ocean carbon cycle. Eos, 2002, 83, 482.	0.1	12
160	Hourly In Situ Nitrate on a Coastal Mooring: A 15-Year Record and Insights into New Production. Oceanography, 2017, 30, 114-127.	0.5	12
161	Global Oceans. Bulletin of the American Meteorological Society, 2020, 101, S129-S184.	1.7	12
162	The Deep Ocean's Carbon Exhaust. Global Biogeochemical Cycles, 2022, 36, .	1.9	12

#	Article	IF	CITATIONS
163	Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism Using In Situ Dissolved Oxygen Sensors. Springer Protocols, 2012, , 73-101.	0.1	11
164	A critical examination of the NBS pH scale and the determination of titration alkalinity. Deep-sea Research, 1977, 24, 915-926.	1.5	10
165	Monitoring the Spring Bloom in an Ice Covered Fjord with the Land/Ocean Biogeochemical Observatory (LOBO). , 2007, , .		10
166	The effects of pressure on pH of Tris buffer in synthetic seawater. Marine Chemistry, 2017, 188, 1-5.	0.9	10
167	Development and initial deployments of an autonomous in situ instrument for long-term monitoring of copper (II) in the marine environment. Limnology and Oceanography: Methods, 2008, 6, 336-346.	1.0	7
168	ISUS/SUNA nitrate measurements in networked ocean observing systems. , 2009, , .		4
169	A comment on â€~MgSO4 ion association in seawater' by Fisher, Gieskes and Hsu. Marine Chemistry, 1982, 11, 285-286.	0.9	3
170	Developing chemical sensors to observe the health of the global ocean. , 2017, , .		3
171	The Global Ocean Biogeochemistry (GO-BGC) Array of Profiling Floats to Observe Changing Ocean Chemistry and Biology. Marine Technology Society Journal, 2022, 56, 122-123.	0.3	3
172	Tidally oscillating bisulfide fluxes and fluid flow rates observed with in situ chemical sensors at a warm spring in Monterey Bay, California. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 1585-1595.	0.6	2
173	BioArgo: A global scale chemical sensor network to observe carbon, oxygen, and nitrogen cycles in the ocean. , 2013, , .		2
174	Optimization of a robust and reliable ISFET sensor for measuring pH in the deep ocean. , 2016, , .		2
175	Contact stabilization of potential calcium carbonate scale by rhodochrosite. Desalination, 1983, 48, 17-23.	4.0	0
176	The influence of the sediment community on chemical transformations. Applied Geochemistry, 1988, 3, 115.	1.4	0
177	Interpreting intraseasonal variability of subsurface tracers observed by a profiling float. Journal of Geophysical Research: Oceans, 2014, 119, 288-296.	1.0	0
178	Measuring pH in the deep ocean with Honeywell Durafet transistors. , 2015, , .		0