Andrés Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245627/publications.pdf

Version: 2024-02-01

135 papers 14,837 citations

24978 57 h-index 20307 116 g-index

137 all docs

137 docs citations

times ranked

137

19490 citing authors

#	Article	IF	CITATIONS
1	Signals from the Sympathetic Nervous System Regulate Hematopoietic Stem Cell Egress from Bone Marrow. Cell, 2006, 124, 407-421.	13.5	1,211
2	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	4.2	732
3	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	7.0	589
4	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	13.5	555
5	Neutrophils scan for activated platelets to initiate inflammation. Science, 2014, 346, 1234-1238.	6.0	516
6	Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity, 2018, 48, 364-379.e8.	6.6	450
7	Heterogeneity of neutrophils. Nature Reviews Immunology, 2019, 19, 255-265.	10.6	416
8	Neutrophils as protagonists and targets in chronic inflammation. Nature Reviews Immunology, 2017, 17, 248-261.	10.6	409
9	Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood, 2011, 118, 6743-6751.	0.6	390
10	A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell, 2020, 183, 94-109.e23.	13.5	360
11	Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, 127, 2173-2181.	0.6	347
12	Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature, 2019, 572, 670-675.	13.7	345
13	Neutrophils in Homeostasis, Immunity, and Cancer. Immunity, 2017, 46, 15-28.	6.6	320
14	Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nature Medicine, 2009, 15, 384-391.	15.2	307
15	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
16	Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569, 236-240.	13.7	268
17	The Neutrophil Life Cycle. Trends in Immunology, 2019, 40, 584-597.	2.9	265
18	Complete Identification of E-Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL-1, ESL-1, and CD44. Immunity, 2007, 26, 477-489.	6.6	264

#	Article	IF	CITATIONS
19	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	6.6	258
20	Co-option of Neutrophil Fates by Tissue Environments. Cell, 2020, 183, 1282-1297.e18.	13.5	246
21	Chemokine stromal cell-derived factor- \hat{l}_{\pm} modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood, 2001, 97, 346-351.	0.6	228
22	Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nature Communications, 2017, 8, 16073.	5.8	222
23	Phagocytosis imprints heterogeneity in tissue-resident macrophages. Journal of Experimental Medicine, 2017, 214, 1281-1296.	4.2	219
24	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	4.2	200
25	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
26	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	5.0	189
27	Programmed  disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nature Immunology, 2020, 21, 135-144.	7.0	180
28	CD44 is a physiological E-selectin ligand on neutrophils. Journal of Experimental Medicine, 2005, 201, 1183-1189.	4.2	177
29	Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in <i>Jak2</i> ^{<i>V617F</i>} Mice. Circulation Research, 2018, 123, e35-e47.	2.0	173
30	PSGL-1 participates in E-selectin–mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and α4 integrin. Blood, 2003, 102, 2060-2067.	0.6	170
31	Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity, 2020, 53, 303-318.e5.	6.6	153
32	Aging: A Temporal Dimension for Neutrophils. Trends in Immunology, 2016, 37, 334-345.	2.9	150
33	Neutrophil stunning by metoprolol reduces infarct size. Nature Communications, 2017, 8, 14780.	5.8	148
34	The nuclear receptor LXR $\hat{\textbf{l}}\pm$ controls the functional specialization of splenic macrophages. Nature Immunology, 2013, 14, 831-839.	7.0	147
35	Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nature Communications, 2016, 7, 13464.	5.8	143
36	Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 2018, 28, 175-182.e5.	7.2	139

#	Article	IF	CITATIONS
37	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
38	Chemokine stromal cell-derived factor- $1\hat{l}\pm$ modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Experimental Hematology, 2001, 29, 345-355.	0.2	109
39	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
40	BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis. Cell, 2019, 177, 1436-1447.e12.	13.5	107
41	Role of TLR4 (Toll-Like Receptor 4) in N1/N2 Neutrophil Programming After Stroke. Stroke, 2019, 50, 2922-2932.	1.0	106
42	Functional selectin ligands mediating human CD34+ cell interactions with bone marrow endothelium are enhanced postnatally. Journal of Clinical Investigation, 2002, 110, 559-569.	3.9	106
43	Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nature Neuroscience, 2021, 24, 1225-1234.	7.1	103
44	Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood, 2003, 101, 1705-1712.	0.6	95
45	Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metabolism, 2022, 34, 533-548.e12.	7.2	91
46	Selective eosinophil transendothelial migration triggered by eotaxin via modulation of Mac-1/ICAM-1 and VLA-4/VCAM-1 interactions. International Immunology, 1999, 11, 1-10.	1.8	85
47	Distinct transcription factor networks control neutrophil-driven inflammation. Nature Immunology, 2021, 22, 1093-1106.	7.0	83
48	Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nature Cancer, 2021, 2, 1387-1405.	5.7	83
49	Monocytes control natural killer cell differentiation to effector phenotypes. Blood, 2011, 117, 4511-4518.	0.6	80
50	Imaging receptor microdomains on leukocyte subsets in live mice. Nature Methods, 2007, 4, 219-222.	9.0	79
51	Regulation of leucocyte homeostasis in the circulation. Cardiovascular Research, 2015, 107, 340-351.	1.8	79
52	Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. Journal of Clinical Investigation, 2017, 127, 3624-3639.	3.9	78
53	Integrin $\hat{l}\pm4\hat{l}^2$ 7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood, 2004, 104, 2020-2026.	0.6	76
54	Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nature Immunology, 2017, 18, 753-761.	7.0	76

#	Article	IF	Citations
55	High-Resolution Imaging of Intravascular Atherogenic Inflammation in Live Mice. Circulation Research, 2014, 114, 770-779.	2.0	74
56	The Chemokine Stromal Cell-Derived Factor- $1\hat{l}_{\pm}$ Modulates $\hat{l}_{\pm}4\hat{l}^2$ 7 Integrin-Mediated Lymphocyte Adhesion to Mucosal Addressin Cell Adhesion Molecule-1 and Fibronectin. Journal of Immunology, 2002, 168, 5268-5277.	0.4	73
57	Integrin $\hat{l}\pm4\hat{l}^21$ involvement in stromal cell-derived factor- $1\hat{l}\pm$ -promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Experimental Cell Research, 2004, 294, 571-580.	1.2	71
58	Platelets as autonomous drones for hemostatic and immune surveillance. Journal of Experimental Medicine, 2017, 214, 2193-2204.	4.2	70
59	$p38\hat{l}^3$ and $p38\hat{l}'$ reprogram liver metabolism by modulating neutrophil infiltration. EMBO Journal, 2016, 35, 536-552.	3.5	61
60	Circadian Features of Neutrophil Biology. Frontiers in Immunology, 2020, 11, 576.	2.2	57
61	Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood, 2016, 128, 2241-2252.	0.6	54
62	Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421.	13.7	53
63	Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood, 2005, 105, 567-575.	0.6	52
64	Characterization of TGF-beta1-binding proteins in human bone marrow stromal cells. British Journal of Haematology, 1996, 93, 507-514.	1.2	49
65	Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovascular Research, 2016, 112, 568-580.	1.8	49
66	Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1022-1028.	1.1	46
67	Functional selectin ligands mediating human CD34+ cell interactions with bone marrow endothelium are enhanced postnatally. Journal of Clinical Investigation, 2002, 110, 559-569.	3.9	45
68	Physiological Contribution of CD44 as a Ligand for E-Selectin during Inflammatory T-Cell Recruitment. American Journal of Pathology, 2011, 178, 2437-2446.	1.9	43
69	The integrin $\hat{l}\pm M\hat{l}^22$ anchors hematopoietic progenitors in the bone marrow during enforced mobilization. Blood, 2004, 104, 993-1001.	0.6	41
70	Neutrophils as effectors of vascular inflammation. European Journal of Clinical Investigation, 2018, 48, e12940.	1.7	41
71	Intravenous Immunoglobulins Modulate Neutrophil Activation and Vascular Injury Through FcγRIII and SHP-1. Circulation Research, 2012, 110, 1057-1066.	2.0	40
72	Neutrophils as regulators of the hematopoietic niche. Blood, 2019, 133, 2140-2148.	0.6	40

#	Article	IF	Citations
73	T Cells Prevent Hemorrhagic Transformation in Ischemic Stroke by P-Selectin Binding. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1761-1771.	1.1	38
74	In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Scientific Reports, 2017, 7, 13242.	1.6	37
75	Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients. Journal of Infectious Diseases, 2016, 213, 476-484.	1.9	33
76	Essential Roles of Cohesin STAG2 in Mouse Embryonic Development and Adult Tissue Homeostasis. Cell Reports, 2020, 32, 108014.	2.9	33
77	Circadian immune circuits. Journal of Experimental Medicine, 2021, 218, .	4.2	32
78	Coordinated and unique functions of the E-selectin ligand ESL-1 during inflammatory and hematopoietic recruitment in mice. Blood, 2013, 122, 3993-4001.	0.6	31
79	Sphingosineâ€1â€phosphate activates chemokineâ€promoted myeloma cell adhesion and migration involving α4β1 integrin function. Journal of Pathology, 2013, 229, 36-48.	2.1	30
80	Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. Journal of Experimental Medicine, 2021, 218, .	4.2	30
81	Differential Use of Very Late Antigen-4 and -5 Integrins by Hematopoietic Precursors and Myeloma Cells to Adhere to Transforming Growth Factor- \hat{l}^21 -treated Bone Marrow Stroma. Journal of Biological Chemistry, 1998, 273, 12056-12060.	1.6	28
82	Nuclear Receptors and Clearance of Apoptotic Cells: Stimulating the Macrophage \tilde{A} \hat{a} , \hat{a} , \hat{a} , \hat{a} , 4s Appetite. Frontiers in Immunology, 2014, 5, 211.	2.2	28
83	Rapid Up-Regulation of $\hat{l}\pm 4$ Integrin-mediated Leukocyte Adhesion by Transforming Growth Factor- \hat{l}^21 . Molecular Biology of the Cell, 2003, 14, 54-66.	0.9	27
84	Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovascular Research, 2021, 117, 876-889.	1.8	27
85	In vivo adhesion of malignant B cells to bone marrow microvasculature is regulated by $\hat{l}\pm4\hat{l}^21$ cytoplasmic-binding proteins. Leukemia, 2016, 30, 861-872.	3.3	26
86	Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. ELife, 2020, 9, .	2.8	26
87	A NET-thrombosis axis in COVID-19. Blood, 2020, 136, 1118-1119.	0.6	25
88	Specialized functions of resident macrophages in brain and heart. Journal of Leukocyte Biology, 2018, 104, 743-756.	1.5	24
89	Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans. Frontiers in Immunology, 2018, 9, 1033.	2.2	22
90	Macrophages, Metabolism and Heterophagy in the Heart. Circulation Research, 2022, 130, 418-431.	2.0	21

#	Article	IF	Citations
91	Dimensions of neutrophil life and fate. Seminars in Immunology, 2021, 57, 101506.	2.7	20
92	Leukocyte Podosomes Sense Their Way through the Endothelium. Immunity, 2007, 26, 753-755.	6.6	18
93	Innate immune cells as homeostatic regulators of the hematopoietic niche. International Journal of Hematology, 2014, 99, 685-694.	0.7	18
94	Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGF \hat{l}^2 availability. Nature Communications, 2016, 7, 10222.	5.8	16
95	Mitochondrial Adaptations in the Growing Heart. Trends in Endocrinology and Metabolism, 2020, 31, 308-319.	3.1	16
96	Liposome induction of CD8+ T cell responses depends on CD169+ macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. Journal of Controlled Release, 2021, 331, 309-320.	4.8	15
97	Brief Report: Reduced Expression of CD18 Leads to the In Vivo Expansion of Hematopoietic Stem Cells in Mouse Bone Marrow. Stem Cells, 2014, 32, 2794-2798.	1.4	13
98	Emerging roles of infiltrating granulocytes and monocytes in homeostasis. Cellular and Molecular Life Sciences, 2020, 77, 3823-3830.	2.4	12
99	Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia. Scientific Reports, 2021, 11, 728.	1.6	11
100	CD44-Mediated Hematopoietic Progenitor Cell Adhesion and Its Complex Role in Myelopoiesis. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 539-547.	1.8	9
101	Thrombo-tag, an <i>in vivo</i> formed nanotracer for the detection of thrombi in mice by fast pre-targeted molecular imaging. Nanoscale, 2020, 12, 22978-22987.	2.8	9
102	How to bridle a neutrophil. Current Opinion in Immunology, 2021, 68, 41-47.	2.4	9
103	Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. Materials Science and Engineering C, 2022, 134, 112551.	3.8	9
104	CD45 expression discriminates waves of embryonic megakaryocytes in the mouse. Haematologica, 2019, 104, 1853-1865.	1.7	8
105	ACME: Automatic feature extraction for cell migration examination through intravital microscopy imaging. Medical Image Analysis, 2022, 77, 102358.	7.0	8
106	When integrins fail to integrate. Nature Medicine, 2009, 15, 249-250.	15.2	7
107	Immunity: Neutrophil Quorum at the Wound. Current Biology, 2020, 30, R828-R830.	1.8	7
108	Bone Marrow Transplantation in Mice to Study the Role of Hematopoietic Cells in Atherosclerosis. Methods in Molecular Biology, 2015, 1339, 323-332.	0.4	6

#	Article	IF	Citations
109	Combined statistical modeling enables accurate mining of circadian transcription. NAR Genomics and Bioinformatics, 2021, 3, Iqab031.	1.5	6
110	Neutrophil subtypes shape HIV-specific CD8 T-cell responses after vaccinia virus infection. Npj Vaccines, 2021, 6, 52.	2.9	6
111	Galactocerebrosides, Essential for Hematopoietic Progenitor Mobilization, Regulate SDF-1 (CXCL12)-Mediated Attraction to Bone Blood, 2004, 104, 665-665.	0.6	6
112	Leducq Transatlantic Network on Clonal Hematopoiesis and Atherosclerosis. Circulation Research, 2019, 124, 481-483.	2.0	5
113	Editorial: Leukocyte Trafficking in Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 2560.	2.2	5
114	Isolation of exophers from cardiomyocyte-reporter mouse strains by fluorescence-activated cell sorting. STAR Protocols, 2021, 2, 100286.	0.5	5
115	Activated Platelets Jam Up the Plaque. Circulation Research, 2015, 116, 557-559.	2.0	4
116	Hematopoietic stem cell homing: The long, winding and adhesive road to the bone marow. Inmunologia (Barcelona, Spain: 1987), 2008, 27, 22-35.	0.1	3
117	Neutrophils set the bone marrow on fire. Blood, 2017, 129, 540-542.	0.6	2
118	Neutrophils acROSs the Enemy Lines. Immunity, 2017, 46, 335-337.	6.6	2
119	Sickle Cell Vaso-Occlusion Is Triggered by E-Selectin Ligand Signaling and Propagated by the Leukocyte Integrin Mac-1 Blood, 2007, 110, 145-145.	0.6	2
120	Fibrin sparks inflammation in the oral mucosa. Science, 2021, 374, 1559-1560.	6.0	2
121	Measuring Circadian Neutrophil Infiltration in Tissues by Paired Whole-Mount Tissue Clearing and Flow Cytometry. Methods in Molecular Biology, 2022, , 265-284.	0.4	2
122	A hypoxic ride for neutrophils in PDAC. Gut, 2023, 72, 817-818.	6.1	2
123	Angiogenin Defines Heterogeneity at the Core of the Hematopoietic Niche. Cell Stem Cell, 2016, 19, 284-286.	5. 2	1
124	Bidirectional dialog in the haematopoietic niche. Cell Cycle, 2016, 15, 1027-1028.	1.3	1
125	Contributions of Immune Cells to Vascular Occlusion in Sickle Cell Disease Blood, 2008, 112, sci-44-sci-44.	0.6	1
126	In Vivo Imaging of Circadian NET Formation During Lung Injury by Four-Dimensional Intravital Microscopy. Methods in Molecular Biology, 2022, , 285-300.	0.4	1

#	Article	IF	CITATIONS
127	Multicellular cuddling in a stem cell niche. Cell Adhesion and Migration, 2015, 9, 280-282.	1.1	О
128	In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Experimental Hematology, 2021 , , .	0.2	0
129	In memory of a game-changing haematologist. Nature, 2021, 597, 31-31.	13.7	0
130	Paul S. Frenette (1965–2021). Nature Cell Biology, 2021, 23, 1049-1050.	4.6	0
131	Real-Time Identification of Leukocyte Subsets and Cell Surface Receptor Microdomains in the Microvasculature of Wild-Type and Sickle Cell Mice In Vivo Blood, 2006, 108, 1229-1229.	0.6	0
132	ESL-1 Is a Major Physiological Leukocyte Ligand for E-Selectin That Cooperates with PSGL-1 and CD44, and Together Mediate All Binding Activity to Endothelial Selectins In Vivo Blood, 2006, 108, 1787-1787.	0.6	0
133	Transfusion-Related Acute Lung Injury (TRALI) Requires Heterotypic Interactions of Platelets with Specific Neutrophil Microdomains. Blood, 2008, 112, 288-288.	0.6	0
134	ICAPâ€1 loss impairs CD8 ⁺ thymocyte development and leads to reduced marginal zone B cells in mice. European Journal of Immunology, 2022, , .	1.6	0
135	Immune riders on the cardiac STORM. , 2022, 1, 603-604.		O