List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456216/publications.pdf Version: 2024-02-01

FLIEN C. DUVSEN

#	Article	IF	CITATIONS
1	Development of an Educational YouTube Channel: A Collaboration between U.S. Agricultural Safety and Health Centers. Journal of Agromedicine, 2021, 26, 75-84.	0.9	7
2	Occupational stress among farm and ranch operators in the midwestern United States. BMC Public Health, 2021, 21, 2076.	1.2	16
3	Virtual Outreach: Using Social Media to Reach Spanish-speaking Agricultural Workers during the COVID-19 Pandemic. Journal of Agromedicine, 2020, 25, 353-356.	0.9	20
4	Identifying Safety Training Resource Needs in the Cattle Feeding Industry in the Midwestern United States. Safety, 2019, 5, 26.	0.9	6
5	Comparison of agricultural injuries reported in the media and census of fatal occupational injuries. Journal of Agromedicine, 2019, 24, 279-287.	0.9	14
6	Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol. Toxicology, 2017, 384, 33-39.	2.0	21
7	Knowledge, Attitudes, and Practices for Respiratory and Hearing Health among Midwestern Farmers. Public Health Nursing, 2017, 34, 348-358.	0.7	13
8	Assessment of tribal bison worker hazards using trusted research facilitators. Journal of Agromedicine, 2017, 22, 337-346.	0.9	3
9	Identifying Topics and Dissemination Methods for Agricultural Safety and Health Messages. Safety, 2017, 3, 3.	0.9	9
10	Social Marketing Campaign Promoting the Use of Respiratory Protection Devices Among Farmers. Journal of Agromedicine, 2014, 19, 316-324.	0.9	10
11	Polyclonal Antibody to Soman-Tyrosine. Chemical Research in Toxicology, 2013, 26, 584-592.	1.7	11
12	Induction of plasma acetylcholinesterase activity and apoptosis in mice treated with the organophosphorus toxicant, tri-o-cresyl phosphate. Toxicology Research, 2012, 1, 55-61.	0.9	8
13	Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran. Chemico-Biological Interactions 2012, 195, 189-198	1.7	32
14	Mice treated with a nontoxic dose of chlorpyrifos oxon have diethoxyphosphotyrosine labeled proteins in blood up to 4 days post exposure, detected by mass spectrometry. Toxicology, 2012, 295, 15-22.	2.0	14
15	Prolonged Toxic Effects After Cocaine Challenge in Butyrylcholinesterase/Plasma Carboxylesterase Double Knockout Mice: A Model for Butyrylcholinesterase-Deficient Humans. Drug Metabolism and Disposition, 2011, 39, 1321-1323.	1.7	15
16	Production of ES1 Plasma Carboxylesterase Knockout Mice for Toxicity Studies. Chemical Research in Toxicology, 2011, 24, 1891-1898.	1.7	56
17	Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons. Toxicology and Applied Pharmacology, 2011, 255, 214-220.	1.3	15
18	Role of Acetylcholinesterase on the Structure and Function of Cholinergic Synapses: Insights Gained from Studies on Knockout Mice. Cellular and Molecular Neurobiology, 2011, 31, 909-920.	1.7	12

#	Article	IF	CITATIONS
19	Gene-Delivered Butyrylcholinesterase Is Prophylactic against the Toxicity of Chemical Warfare Nerve Agents and Organophosphorus Compounds. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 92-101.	1.3	39
20	Drastic decrease in dopamine receptor levels in the striatum of acetylcholinesterase knock-out mouse. Chemico-Biological Interactions, 2010, 183, 194-201.	1.7	11
21	Visualization of exogenous delivery of nanoformulated butyrylcholinesterase to the central nervous system. Chemico-Biological Interactions, 2010, 187, 295-298.	1.7	35
22	Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chemico-Biological Interactions, 2010, 187, 72-77.	1.7	16
23	Mice Treated with Chlorpyrifos or Chlorpyrifos Oxon Have Organophosphorylated Tubulin in the Brain and Disrupted Microtubule Structures, Suggesting a Role for Tubulin in Neurotoxicity Associated with Exposure to Organophosphorus Agents. Toxicological Sciences, 2010, 115, 183-193.	1.4	82
24	Effects of Rivastigmine and Donepezil on Brain Acetylcholine Levels in Acetylcholinesterase-Deficient Mice. Journal of Pharmacy and Pharmaceutical Sciences, 2009, 12, 79.	0.9	45
25	Adenovirus-Transduced Human Butyrylcholinesterase in Mouse Blood Functions as a Bioscavenger of Chemical Warfare Nerve Agents. Molecular Pharmacology, 2009, 76, 612-617.	1.0	13
26	Mass spectrometry identifies multiple organophosphorylated sites on tubulin. Toxicology and Applied Pharmacology, 2009, 240, 149-158.	1.3	43
27	Intrathecal delivery of fluorescent labeled butyrylcholinesterase to the brains of butyrylcholinesterase knock-out mice: Visualization and quantification of enzyme distribution in the brain. NeuroToxicology, 2009, 30, 386-392.	1.4	8
28	The butyrylcholinesterase knockout mouse a research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer's disease. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 523-528.	1.5	31
29	Increased Hepatotoxicity and Cardiac Fibrosis in Cocaineâ€Treated Butyrylcholinesterase Knockout Mice. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 514-521.	1.2	30
30	Whole body and tissue imaging of the butyrylcholinesterase knockout mouse injected with near infrared dye labeled butyrylcholinesterase. Chemico-Biological Interactions, 2008, 175, 119-124.	1.7	12
31	The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chemico-Biological Interactions, 2008, 175, 88-91.	1.7	62
32	Adenovirus-mediated gene transfer of human butyrylcholinesterase results in persistent high-level transgene expression in vivo. Chemico-Biological Interactions, 2008, 175, 327-331.	1.7	20
33	Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice. Neurochemistry International, 2008, 52, 972-978.	1.9	28
34	The Butyrylcholinesterase Knockout Mouse as a Model for Human Butyrylcholinesterase Deficiency. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1146-1154.	1.3	93
35	Sensitivity of butyrylcholinesterase knockout mice to (â~')-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology, 2007, 233, 60-69.	2.0	85
36	Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry, 2007, 100, 1421-1429.	2.1	133

#	Article	IF	CITATIONS
37	Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 376, 83-92.	1.4	10
38	Production of the Butyrylcholinesterase Knockout Mouse. Journal of Molecular Neuroscience, 2006, 30, 193-196.	1.1	34
39	Gene Transfer of Acetylcholinesterase Protects the Knockout Mouse From the Toxicity of DFP. Journal of Molecular Neuroscience, 2006, 30, 79-80.	1.1	2
40	Phenotype Comparison of Three Acetylcholinesterase Knockout Strains. Journal of Molecular Neuroscience, 2006, 30, 91-92.	1.1	19
41	Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase. Toxicology and Applied Pharmacology, 2006, 214, 152-165.	1.3	14
42	What we have learned from gene-targeted mice: acetylcholinesterase and butyrylcholinesterase knockouts. , 2006, , 113-124.		0
43	Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse. Chemico-Biological Interactions, 2005, 157-158, 71-78.	1.7	10
44	Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochemical Pharmacology, 2005, 70, 1673-1684.	2.0	478
45	Life without acetylcholinesterase: the implications of cholinesterase inhibitor toxicity in AChE-knockout mice. Environmental Toxicology and Pharmacology, 2005, 19, 463-469.	2.0	22
46	Impaired formation of the inner retina in an AChE knockout mouse results in degeneration of all photoreceptors. European Journal of Neuroscience, 2004, 20, 2953-2962.	1.2	38
47	Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase. Toxicology and Applied Pharmacology, 2004, 196, 356-366.	1.3	33
48	Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle and Nerve, 2004, 30, 317-327.	1.0	49
49	Screening assays for cholinesterases resistant to inhibition by organophosphorus toxicants. Analytical Biochemistry, 2004, 329, 131-138.	1.1	10
50	Albumin, a New Biomarker of Organophosphorus Toxicant Exposure, Identified by Mass Spectrometry. Toxicological Sciences, 2004, 83, 303-312.	1.4	149
51	Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacology Biochemistry and Behavior, 2003, 74, 977-986.	1.3	65
52	Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Annals of Neurology, 2003, 53, 788-796.	2.8	34
53	Altered Striatal Function and Muscarinic Cholinergic Receptors in Acetylcholinesterase Knockout Mice. Molecular Pharmacology, 2003, 64, 1309-1316.	1.0	60
54	Wild-Type and A328W Mutant Human Butyrylcholinesterase Tetramers Expressed in Chinese Hamster Ovary Cells Have a 16-Hour Half-Life in the Circulation and Protect Mice from Cocaine Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 751-758.	1.3	85

#	Article	IF	CITATIONS
55	Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Developmental Brain Research, 2002, 137, 43-54.	2.1	118
56	Early weaning and culling eradicated Helicobacter hepaticus from an acetylcholinesterase knockout 129S6/SvEvTac mouse colony. Comparative Medicine, 2002, 52, 461-6.	0.4	6
57	Glucocorticoid Mediation of Dietary Energy Restriction Inhibition of Mouse Skin Carcinogenesis. Journal of Nutrition, 1999, 129, 571S-574S.	1.3	38
58	Dietary energy restriction in the SENCAR mouse: Elevation of glucocorticoid hormone levels but no change in distribution of glucocorticoid receptor in epidermal cells. Molecular Carcinogenesis, 1998, 21, 62-69.	1.3	17
59	Dietary energy restriction in the SENCAR mouse: Elevation of glucocorticoid hormone levels but no change in distribution of glucocorticoid receptor in epidermal cells. , 1998, 21, 62.		1