
Francisco Zaera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamics of Carbon Monoxide Adsorption on Cu/SBA-15 Catalysts: Under Vacuum versus under Atmospheric Pressures. Journal of Physical Chemistry C, 2022, 126, 3078-3086.	1.5	5
2	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
3	Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and Lewis acid sites. Catalysis Science and Technology, 2021, 11, 2433-2445.	2.1	32
4	Adsorption of crotonaldehyde on metal surfaces: Cu vs Pt. Journal of Chemical Physics, 2021, 154, 104701.	1.2	10
5	Hydrogenation of Cinnamaldehyde on Cu(110) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2021, 125, 14709-14717.	1.5	10
6	In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. Journal of Catalysis, 2021, 404, 900-910.	3.1	27
7	Cinnamaldehyde adsorption and thermal decomposition on copper surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 053205.	0.9	3
8	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 2021, 448, 214179.	9.5	29
9	Catalytic hydrogenation of furfural to furfuryl alcohol on hydrotalcite-derived CuxNi3â^'xAlOy mixed-metal oxides. Journal of Catalysis, 2021, 404, 420-429.	3.1	19
10	Thermal Chemistry of Nickel Diketonate Atomic Layer Deposition (ALD) Precursors on Tantalum and Silicon Oxide Surfaces. Journal of Physical Chemistry C, 2021, 125, 22006-22022.	1.5	2
11	Role of oligomer structures in the surface chemistry of amidinate metal complexes used for atomic layer deposition of thin films. Journal of Materials Research, 2020, 35, 720-731.	1.2	7
12	Thermal Chemistry of Metal Organic Compounds Adsorbed on Oxide Surfaces. Organometallics, 2020, 39, 928-940.	1.1	10
13	Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate. Journal of Catalysis, 2020, 391, 155-162.	3.1	18
14	Tailoring a Three-Phase Microenvironment for High-Performance Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Matter, 2020, 3, 1774-1790.	5.0	71
15	Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica. Nano Letters, 2020, 20, 6884-6890.	4.5	23
16	Baking and plasma pretreatment of sapphire surfaces as a way to facilitate the epitaxial plasma-enhanced atomic layer deposition of GaN thin films. Applied Physics Letters, 2020, 116, .	1.5	14
17	Adsorption of Chiral Modifiers from Solution onto Supported Platinum Catalysts: The Effect of the Solvent, Other Coadsorbates, and the Support. Journal of Physical Chemistry C, 2020, 124, 7903-7913.	1.5	11
18	Density Functional Theory Study of the Adsorption and Dissociation of Copper(I) Acetamidinates on Ni(110): The Effect of the Substrate, Journal of Physical Chemistry C, 2020, 124, 15366-15376	1.5	5

#	Article	IF	CITATIONS
19	Kinetic Study of the Hydrogenation of Unsaturated Aldehydes Promoted by CuPt _{<i>x</i>} /SBA-15 Single-Atom Alloy (SAA) Catalysts. ACS Catalysis, 2020, 10, 3431-3443.	5.5	53
20	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 11647-11652.	7.2	111
21	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 11744-11749.	1.6	31
22	ToF-SIMS Investigation of the Initial Stages of MeCpPt(CH ₃) ₃ Adsorption and Decomposition on Nickel Oxide Surfaces: Exploring the Role and Location of the Ligands. Organometallics, 2020, 39, 1024-1034.	1.1	5
23	Coadsorption of Formic Acid and Hydrazine on Cu(110) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2019, 123, 7584-7593.	1.5	16
24	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
25	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
26	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
27	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
28	Effect of metal nanoparticle size and titania crystallinity on the performance of Au/TiO2 catalysts for the promotion of carbon monoxide oxidation at cryogenic temperatures. Journal of Chemical Physics, 2019, 151, .	1.2	8
29	Controlling Selectivity in Unsaturated Aldehyde Hydrogenation Using Single-Site Alloy Catalysts. ACS Catalysis, 2019, 9, 9150-9157.	5.5	55
30	Application of time-of-flight secondary ion mass spectrometry to the detection of surface intermediates during the first cycle of atomic layer deposition (ALD) of platinum on silica surfaces. Applied Surface Science, 2019, 488, 468-476.	3.1	5
31	Atomic Layer Deposition (ALD) as a Way to Prepare New Mixed-Oxide Catalyst Supports: The Case of Alumina Addition to Silica-Supported Platinum for the Selective Hydrogenation of Cinnamaldehyde. Topics in Catalysis, 2019, 62, 838-848.	1.3	20
32	Porous LaFeO ₃ Prepared by an in Situ Carbon Templating Method for Catalytic Transfer Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 15517-15527.	4.0	66
33	Density Functional Theory Study of the Surface Adsorption and Dissociation of Copper(I) Acetamidinates on Cu(110) Surfaces. Journal of Physical Chemistry C, 2019, 123, 4341-4348.	1.5	12
34	Rational Design of Metalorganic Complexes for the Deposition of Solid Films: Growth of Metallic Copper with Amidinate Precursors. Chemistry of Materials, 2019, 31, 1681-1687.	3.2	8
35	Use of Au@Void@TiO2 yolk-shell nanostructures to probe the influence of oxide crystallinity on catalytic activity for low-temperature oxidations. Journal of Chemical Physics, 2019, 151, 234706.	1.2	6
36	Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25347-25354.	5.2	28

#	Article	IF	CITATIONS
37	JPCL: A Dynamic Journal with a Global Reach. Journal of Physical Chemistry Letters, 2019, 10, 113-114.	2.1	Ο
38	Switch in Relative Stability between <i>cis</i> and <i>trans</i> 2-Butene on Pt(111) as a Function of Experimental Conditions: A Density Functional Theory Study. ACS Catalysis, 2018, 8, 3067-3075.	5.5	8
39	The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces. Accounts of Chemical Research, 2018, 51, 800-809.	7.6	41
40	Highâ€Potential Metalless Nanocarbon Foam Supercapacitors Operating in Aqueous Electrolyte. Small, 2018, 14, e1702444.	5.2	11
41	Selectivity in Hydrogenation Catalysis with Unsaturated Aldehydes: Parallel versus Sequential Steps. Journal of Physical Chemistry Letters, 2018, 9, 1301-1306.	2.1	21
42	Synthesis of Solid Catalysts with Spatially Resolved Acidic and Basic Molecular Functionalities. ACS Catalysis, 2018, 8, 2870-2879.	5.5	37
43	Chemistry of Ruthenium Diketonate Atomic Layer Deposition (ALD) Precursors on Metal Surfaces. Journal of Physical Chemistry C, 2018, 122, 13481-13491.	1.5	18
44	Editorial: 2017 in Perspective. Journal of Physical Chemistry Letters, 2018, 9, 138-140.	2.1	0
45	Monte Carlo Simulations of the Uptake of Chiral Compounds on Solid Surfaces. Journal of Physical Chemistry B, 2018, 122, 444-454.	1.2	2
46	Gold-Titania Catalysts for Low-Temperature Oxidation and Water Splitting. Topics in Catalysis, 2018, 61, 336-347.	1.3	13
47	Infrared absorption spectroscopy characterization of liquid–solid interfaces: The case of chiral modification of catalysts. Surface Science, 2018, 669, 16-24.	0.8	11
48	Sub-monolayer control of the growth of oxide films on mesoporous materials. Journal of Materials Chemistry A, 2018, 6, 17548-17558.	5.2	18
49	Synthesis of Chiral Dendrimer-Encapsulated Nanoparticle (DEN) Catalysts. Topics in Catalysis, 2018, 61, 902-914.	1.3	7
50	Gas-Phase Electron-Impact Activation of Atomic Layer Deposition (ALD) Precursors: MeCpPtMe ₃ . Journal of Physical Chemistry Letters, 2018, 9, 4602-4606.	2.1	11
51	Platinum atomic layer deposition on metal substrates: A surface chemistry study. Surface Science, 2018, 677, 161-166.	0.8	15
52	Sub-Monolayer Control of Mixed-Oxide Support Composition in Catalysts via Atomic Layer Deposition: Selective Hydrogenation of Cinnamaldehyde Promoted by (SiO ₂ -ALD)-Pt/Al ₂ O ₃ . ACS Catalysis, 2018, 8, 8513-8524.	5.5	62
53	The Role of Carbonaceous Deposits in Hydrogenation Catalysis Revisited. Journal of Physical Chemistry C, 2017, 121, 2285-2293.	1.5	13
54	Correlation between Chiral Modifier Adsorption and Enantioselectivity in Hydrogenation Catalysis. Angewandte Chemie - International Edition, 2017, 56, 7963-7966.	7.2	15

#	Article	IF	CITATIONS
55	Correlation between Chiral Modifier Adsorption and Enantioselectivity in Hydrogenation Catalysis. Angewandte Chemie, 2017, 129, 8071-8074.	1.6	1
56	Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces. Surface Science Reports, 2017, 72, 59-104.	3.8	23
57	The long and winding road to catalysis. Nature, 2017, 541, 37-38.	13.7	30
58	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41-41.	2.1	0
59	Activation of the dimers and tetramers of metal amidinate atomic layer deposition precursors upon adsorption on silicon oxide surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	12
60	Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors. Journal of Chemical Physics, 2017, 146, 052806.	1.2	15
61	Chirality in adsorption on solid surfaces. Chemical Society Reviews, 2017, 46, 7374-7398.	18.7	122
62	Perspective Collections in the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 5239-5239.	2.1	0
63	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	2.1	0
64	In the Limelight: Perspective Collections on Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 5688-5688.	2.1	0
65	Kinetics of hydrogen adsorption during catalytic reactions on transition metal surfaces. Catalysis Science and Technology, 2017, 7, 5354-5364.	2.1	10
66	The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catalysis, 2017, 7, 4947-4967.	5.5	145
67	Hydrogenation vs. H–D isotope scrambling during the conversion of ethylene with hydrogen/deuterium catalyzed by platinum under single-collision conditions. Physical Chemistry Chemical Physics, 2016, 18, 19248-19258.	1.3	12
68	Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non hiral Surface. Angewandte Chemie - International Edition, 2016, 55, 6225-6228.	7.2	9
69	Kinetics of Adsorption of Methylcyclopentadienyl Manganese Tricarbonyl on Copper Surfaces and Implications for the Atomic Layer Deposition of Thin Solid Films. Journal of Physical Chemistry C, 2016, 120, 8232-8239.	1.5	14
70	Evaluation of the Effective Photoexcitation Distances in the Photocatalytic Production of H ₂ from Water using Au@Void@TiO ₂ Yolk–Shell Nanostructures. ACS Energy Letters, 2016, 1, 52-56.	8.8	41
71	Patterning of Solid Films via Selective Atomic Layer Deposition Based on Silylation and UV/Ozonolysis. ACS Applied Materials & Interfaces, 2016, 8, 19836-19841.	4.0	13
72	High energy and power density Li–O ₂ battery cathodes based on amorphous RuO ₂ loaded carbon free and binderless nickel nanofoam architectures. RSC Advances, 2016, 6, 81712-81718.	1.7	25

#	Article	IF	CITATIONS
73	Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Nonâ€Chiral Surface. Angewandte Chemie, 2016, 128, 6333-6336.	1.6	1
74	Direct Addition Mechanism during the Catalytic Hydrogenation of Olefins over Platinum Surfaces. Journal of Physical Chemistry Letters, 2016, 7, 2439-2443.	2.1	18
75	Thermal Decomposition of Copper Iminopyrrolidinate Atomic Layer Deposition (ALD) Precursors on Silicon Oxide Surfaces. Journal of Physical Chemistry C, 2016, 120, 14149-14156.	1.5	14
76	Abrupt increase in hydrogen diffusion on transition-metal surfaces during hydrogenation catalysis. Chemical Science, 2016, 7, 4660-4666.	3.7	8
77	Thermal chemistry of hydrazine on clean and oxygen- and water-predosed Cu(110) single-crystal surfaces. Surface Science, 2016, 650, 263-271.	0.8	4
78	Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy. Surface Science, 2016, 652, 134-141.	0.8	21
79	Scalable, Binderless, and Carbonless Hierarchical Ni Nanodendrite Foam Decorated with Hydrous Ruthenium Dioxide for 1.6 V Symmetric Supercapacitors. Advanced Materials Interfaces, 2016, 3, 1500503.	1.9	22
80	Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648, 150-155.	0.8	17
81	Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications. ACS Applied Materials & Interfaces, 2016, 8, 6293-6300.	4.0	18
82	Reaching Out with Physical Chemistry. Journal of Physical Chemistry Letters, 2016, 7, 103-104.	2.1	1
83	Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catalysis Today, 2016, 264, 261-269.	2.2	41
84	Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	16
85	Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited. Surface Science, 2016, 646, 37-44.	0.8	31
86	A Prolific First Five Years. Journal of Physical Chemistry Letters, 2015, 6, 180-182.	2.1	0
87	Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment. Nanoscale, 2015, 7, 7045-7050.	2.8	25
88	Surface Chemistry for Enantioselective Catalysis. Catalysis Letters, 2015, 145, 220-232.	1.4	86
89	Factors affecting activity and selectivity in the oxidation of glycerol promoted by platinum catalysts. Catalysis Science and Technology, 2015, 5, 3773-3781.	2.1	9
90	Amplification of Enantioselectivity on Solid Surfaces Using Nonchiral Adsorbates. Journal of Physical Chemistry C, 2015, 119, 13785-13790.	1.5	13

#	Article	IF	CITATIONS
91	Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. Journal of Catalysis, 2015, 326, 116-126.	3.1	51
92	A step in the right direction. Nature Chemistry, 2015, 7, 279-280.	6.6	0
93	The Surface Chemistry of Catalytic Reactions: Progress and Challenges. Journal of Physical Chemistry Letters, 2015, 6, 4115-4116.	2.1	3
94	Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	10
95	Correlated bifunctionality in heterogeneous catalysts: selective tethering of cinchonidine next to supported Pt nanoparticles. Catalysis Science and Technology, 2015, 5, 680-689.	2.1	20
96	Spatial resolution in thin film deposition on silicon surfaces by combining silylation and UV/ozonolysis. Nanotechnology, 2014, 25, 504006.	1.3	15
97	New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chemical Society Reviews, 2014, 43, 7624-7663.	18.7	243
98	Mechanistic investigation of the cis/trans isomerization of 2-butene on Pt(111): DFT study of the influence of the hydrogen coverage. Journal of Catalysis, 2014, 311, 190-198.	3.1	23
99	Overcoming the Myths of the Review Process and Getting Your Paper Ready for Publication. Journal of Physical Chemistry Letters, 2014, 5, 896-899.	2.1	9
100	Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7942-7947.	3.3	109
101	Selectivity in the catalytic hydrogenation of cinnamaldehyde promoted by Pt/SiO2 as a function of metal nanoparticle size. Catalysis Science and Technology, 2014, 4, 955-962.	2.1	72
102	Selective Hydrogenation of Cinnamaldehyde to Cinnamal Alcohol over Platinum/Graphene Catalysts. ChemCatChem, 2014, 6, 3246-3253.	1.8	80
103	Adsorption Energy of <i>tert</i> -Butyl on Pt(111) by Dissociation of <i>tert</i> -Butyl lodide: Calorimetry and DFT. Journal of Physical Chemistry C, 2014, 118, 427-438.	1.5	22
104	Catalytic oxidation of carbon monoxide at cryogenic temperatures. Journal of Catalysis, 2014, 319, 155-162.	3.1	12
105	Increase in Activity and Selectivity in Catalysis via Surface Modification with Self-Assembled Monolayers. Journal of Physical Chemistry C, 2014, 118, 3672-3679.	1.5	43
106	Reaction of Methylcyclopentadienyl Manganese Tricarbonyl on Silicon Oxide Surfaces: Implications for Thin Film Atomic Layer Depositions. Organometallics, 2014, 33, 5308-5315.	1.1	17
107	Why Did You Accept My Paper?. Journal of Physical Chemistry Letters, 2014, 5, 2443-2443.	2.1	2
108	Near-Unity Reaction Probability in Olefin Hydrogenation Promoted by Heterogeneous Metal Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 2121-2125.	2.1	18

#	Article	IF	CITATIONS
109	Oxidizing versus Reducing Co-Reactants in Manganese Atomic Layer Deposition (ALD) on Silicon Oxide Surfaces. ECS Journal of Solid State Science and Technology, 2014, 3, Q89-Q94.	0.9	9
110	Dependence of the adsorption of chiral compounds on their enantiomeric composition. Surface Science, 2014, 629, 3-10.	0.8	17
111	Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports, 2014, 4, 4452.	1.6	424
112	Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO ₂ core–shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 1488-1496.	1.3	65
113	Heterogeneous Catalyst for the Selective Oxidation of Unactivated Hydrocarbons Based on a Tethered Metal-Coordinated Cavitand. ACS Catalysis, 2013, 3, 2154-2157.	5.5	27
114	Nanoparticle Shape Selectivity in Catalysis: Butene Isomerization and Hydrogenation on Platinum. Topics in Catalysis, 2013, 56, 1284-1298.	1.3	25
115	Shape ontrolled Nanostructures in Heterogeneous Catalysis. ChemSusChem, 2013, 6, 1797-1820.	3.6	142
116	Mass Transport across the Porous Oxide Shells of Core–Shell and Yolk–Shell Nanostructures in Liquid Phase. Journal of Physical Chemistry C, 2013, 117, 20043-20053.	1.5	42
117	A Sulfated ZrO ₂ Hollow Nanostructure as an Acid Catalyst in the Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 2001-2008.	3.6	58
118	Core–Shell Nanostructured Catalysts. Accounts of Chemical Research, 2013, 46, 1816-1824.	7.6	501
119	Nanostructured materials for applications in heterogeneous catalysis. Chemical Society Reviews, 2013, 42, 2746-2762.	18.7	567
120	Mechanisms of surface reactions in thin solid film chemical deposition processes. Coordination Chemistry Reviews, 2013, 257, 3177-3191.	9.5	88
121	Controllable Synthesis of Mesoporous TiO ₂ Hollow Shells: Toward an Efficient Photocatalyst. Advanced Functional Materials, 2013, 23, 4246-4254.	7.8	216
122	Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy and Environmental Science, 2013, 6, 2082.	15.6	203
123	Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. Journal of Materials Research, 2013, 28, 362-368.	1.2	42
124	Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: a surface-science perspective. Physical Chemistry Chemical Physics, 2013, 15, 11988.	1.3	73
125	Thermal Chemistry of Cu(I)-Iminopyrrolidinate and Cu(I)-Guanidinate Atomic Layer Deposition (ALD) Precursors on Ni(110) Single-Crystal Surfaces. Chemistry of Materials, 2013, 25, 3630-3639.	3.2	26
126	Enantiospecific Kinetics in Surface Adsorption: Propylene Oxide on Pt(111) Surfaces. Journal of Physical Chemistry C, 2013, 117, 18588-18594.	1.5	19

#	Article	IF	CITATIONS
127	Chemistry of Cu(acac)2 on Ni(110) and Cu(110) surfaces: Implications for atomic layer deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	31
128	Adsorption of 1â€(1â€Naphthyl)ethylamine from Solution onto Platinum Surfaces: Implications for the Chiral Modification of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2013, 52, 3453-3456.	7.2	35
129	Thermal chemistry of copper(I)- <i>N,N ′</i> -di- <i>sec</i> -butylacetamidinate on Cu(110) single-crystal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	28
130	Chemical Vapor Deposition of Manganese Metallic Films on Silicon Oxide Substrates. Journal of Physical Chemistry C, 2012, 116, 23585-23595.	1.5	22
131	Operando Studies of the Catalytic Hydrogenation of Ethylene on Pt(111) Single Crystal Surfaces. ACS Catalysis, 2012, 2, 2259-2268.	5.5	50
132	X-ray-Initiated Metal-Promoted Thin Film Growth. Journal of Physical Chemistry C, 2012, 116, 8594-8600.	1.5	20
133	Interference of the Surface of the Solid on the Performance of Tethered Molecular Catalysts. Journal of the American Chemical Society, 2012, 134, 13056-13065.	6.6	24
134	Activation of Metal–Organic Precursors by Electron Bombardment in the Gas Phase for Enhanced Deposition of Solid Films. Journal of Physical Chemistry Letters, 2012, 3, 2523-2527.	2.1	17
135	The Surface Chemistry of Atomic Layer Depositions of Solid Thin Films. Journal of Physical Chemistry Letters, 2012, 3, 1301-1309.	2.1	106
136	Thermal chemistry of Mn2(CO)10 during deposition of thin manganese films on silicon oxide and on copper surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	24
137	Control of the nanoscale crystallinity in mesoporous TiO ₂ shells for enhanced photocatalytic activity. Energy and Environmental Science, 2012, 5, 6321-6327.	15.6	272
138	Tuning Electron Transport in Grapheneâ€Based Fieldâ€Effect Devices using Block Coâ€polymers. Small, 2012, 8, 1073-1080.	5.2	23
139	New Challenges in Heterogeneous Catalysis for the 21st Century. Catalysis Letters, 2012, 142, 501-516.	1.4	114
140	Probing Liquid/Solid Interfaces at the Molecular Level. Chemical Reviews, 2012, 112, 2920-2986.	23.0	373
141	Infrared Absorption Spectroscopy of Adsorbed CO: New Applications in Nanocatalysis for an Old Approach. ChemCatChem, 2012, 4, 1525-1533.	1.8	43
142	Diffusion through the Shells of Yolk–Shell and Core–Shell Nanostructures in the Liquid Phase. Angewandte Chemie - International Edition, 2012, 51, 8034-8036.	7.2	69
143	Chemoselective fabrication of high density peptide microarray by heteroâ€bifunctional tetra(ethylene) Tj ETQq1 2 100A, 103-110.	1 0.78431 2.1	4 rgBT /Ove 7
144	Mesoporous Anatase Titania Hollow Nanostructures though Silicaâ€Protected Calcination. Advanced Functional Materials, 2012, 22, 166-174.	7.8	404

#	Article	IF	CITATIONS
145	Surface Chemistry of Copper(I) Acetamidinates in Connection with Atomic Layer Deposition (ALD) Processes. Chemistry of Materials, 2011, 23, 3325-3334.	3.2	77
146	Surface Chemistry of Pentakis(dimethylamido)tantalum on Ta Surfaces. Journal of Physical Chemistry C, 2011, 115, 8240-8247.	1.5	14
147	The Stereoselectivity of the Dehydrogenation of Alkyl Groups on Pt(111) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2011, 115, 982-989.	1.5	15
148	New nanostructured heterogeneous catalysts with increased selectivity and stability. Physical Chemistry Chemical Physics, 2011, 13, 2449-2456.	1.3	109
149	Chemical Nature of the Thin Films that Form on SiO ₂ /Si(100) Surfaces Upon Manganese Deposition. Journal of Physical Chemistry Letters, 2011, 2, 2525-2530.	2.1	30
150	Bond Forming Reactions Involving C1 Moieties: Late Versus Early Transition Metal Surfaces. Topics in Catalysis, 2011, 54, 482-489.	1.3	5
151	Varied Thermal Chemistry of Hydrocarbons on Nickel Single-Crystal Surfaces. Topics in Catalysis, 2011, 54, 26-33.	1.3	7
152	Preface: 5th San Luis Pan-American Conference on Surfaces, Interfaces and Catalysis. Topics in Catalysis, 2011, 54, 1-3.	1.3	5
153	Cinchona Alkaloids Tethered on Porous Silica as Enantioselective Heterogeneous Catalysts. Topics in Catalysis, 2011, 54, 1340-1347.	1.3	20
154	Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Research, 2011, 4, 115-123.	5.8	107
155	A Yolk@Shell Nanoarchitecture for Au/TiO ₂ Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10208-10211.	7.2	299
156	A Highly Active Titanium Dioxide Based Visible‣ight Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration. Angewandte Chemie - International Edition, 2011, 50, 7088-7092.	7.2	290
157	Dendrimer-based synthesis of Pt catalysts for hydrocarbon conversion. Applied Catalysis A: General, 2011, 391, 386-393.	2.2	38
158	Thermal activation and reaction of allyl alcohol on Ni(100). Surface Science, 2011, 605, 1236-1242.	0.8	4
159	Surface chemistry at the liquid/solid interface. Surface Science, 2011, 605, 1141-1145.	0.8	43
160	Reductive Eliminations from Amido Metal Complexes: Implications for Metal Film Deposition. Journal of the Electrochemical Society, 2011, 158, D524.	1.3	28
161	Solvothermal synthesis of a highly branched Ta-doped TiO ₂ . Journal of Materials Research, 2011, 26, 2653-2659.	1.2	11
162	Alkane Oxidation on Rh(111) Single-Crystal Surfaces under High-Temperature, Short-Contact-Time Conditions: A Molecular Beam Kinetic Study. Journal of Physical Chemistry C, 2010, 114, 16946-16954.	1.5	11

#	Article	IF	CITATIONS
163	Catalytic conversion of olefins on supported cubic platinum nanoparticles: Selectivity of (100) versus (111) surfaces. Journal of Catalysis, 2010, 269, 359-366.	3.1	47
164	Surfaceâ€Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts. Advanced Functional Materials, 2010, 20, 2201-2214.	7.8	220
165	(Invited) The Surface Chemistry of Atomic Layer Deposition (ALD) Processes for Metal Nitride and Metal Oxide Film Growth. ECS Transactions, 2010, 33, 291-305.	0.3	20
166	Adsorption of Carbon Monoxide on Dendrimer-Encapsulated Platinum Nanoparticles: Liquid versus Gas Phase. Journal of Physical Chemistry Letters, 2010, 1, 38-40.	2.1	51
167	Formation of an Oxametallacycle Surface Intermediate via Thermal Activation of 1-Chloro-2-methyl-2-propanol on Ni(100). Journal of Physical Chemistry C, 2010, 114, 7913-7919.	1.5	7
168	Preface to the Festschrift in Honor of Professor D. Wayne Goodman. Journal of Physical Chemistry C, 2010, 114, 16861-16862.	1.5	0
169	The New Materials Science of Catalysis: Toward Controlling Selectivity by Designing the Structure of the Active Site. Journal of Physical Chemistry Letters, 2010, 1, 621-627.	2.1	88
170	Adsorption Properties of Supported Platinum Catalysts Prepared using Dendrimers. Langmuir, 2010, 26, 16204-16210.	1.6	37
171	Uptake of Copper Acetamidinate ALD Precursors on Nickel Surfaces. Chemistry of Materials, 2010, 22, 352-359.	3.2	51
172	Thermal Chemistry of Tetrakis(ethylmethylamido)titanium on Si(100) Surfaces. Journal of Physical Chemistry A, 2009, 113, 3946-3954.	1.1	42
173	Conversion of cis- and trans-2-butene with Deuterium on a Pd/Fe3O4 model catalyst. Journal of Catalysis, 2009, 265, 191-198.	3.1	38
174	Tuning selectivity in catalysis by controlling particle shape. Nature Materials, 2009, 8, 132-138.	13.3	442
175	Nb-doped hematites for decomposition of isopropanol: Evidence of surface reactivity by in situ CO adsorption. Applied Catalysis A: General, 2009, 368, 17-21.	2.2	26
176	Coupling Reactions in Aldehydes Adsorbed on V(100) Single-Crystal Surfaces. Journal of the American Chemical Society, 2009, 131, 8708-8713.	6.6	13
177	Regio-, Stereo-, and Enantioselectivity in Hydrocarbon Conversion on Metal Surfaces. Accounts of Chemical Research, 2009, 42, 1152-1160.	7.6	129
178	Hydrofluoric-Acid-Resistant and Hydrophobic Pure-Silica-Zeolite MEL Low-Dielectric-Constant Films. Langmuir, 2009, 25, 5039-5044.	1.6	18
179	Influence of Peripheral Groups on the Physical and Chemical Behavior of Cinchona Alkaloids. Journal of Physical Chemistry B, 2009, 113, 11696-11701.	1.2	42
180	The Physico-chemical Properties of Cinchona Alkaloids Responsible for their Unique Performance in Chiral Catalysis. Topics in Catalysis, 2008, 48, 120-127.	1.3	46

#	Article	IF	CITATIONS
181	Mechanistic details of atomic layer deposition (ALD) processes for metal nitride film growth. Journal of Molecular Catalysis A, 2008, 281, 35-43.	4.8	51
182	lsomerization and Hydrogenation of <i>cis</i> -2-Butene on Pd Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 11408-11420.	1.5	94
183	The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing. Journal of Materials Chemistry, 2008, 18, 3521.	6.7	109
184	Chiral Modification of Solid Surfaces: A Molecular View. Journal of Physical Chemistry C, 2008, 112, 16196-16203.	1.5	136
185	Methanol Adsorption on Clean and Oxygen-Predosed V(100) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2008, 112, 1636-1644.	1.5	22
186	Thermal Chemistry of 1,4-Difluoro-2-butenes on Pt(111) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2008, 112, 14117-14123.	1.5	19
187	1-(1-Naphthyl)Ethylamine Adsorption on Platinum Surfaces: On the Mechanism of Chiral Modification in Catalysis. Journal of the American Chemical Society, 2008, 130, 14597-14604.	6.6	45
188	Comprehensive Characterization of Hybrid Junctions Comprised of a Porphyrin Monolayer Sandwiched Between a Coinage Metal Overlayer and a Si(100) Substrate. Journal of Physical Chemistry C, 2008, 112, 9474-9485.	1.5	11
189	Origin of the Selectivity for Trans-to-Cis Isomerization in 2-Butene on Pt(111) Single Crystal Surfaces. Journal of the American Chemical Society, 2008, 130, 14924-14925.	6.6	64
190	Kinetics and Mechanism of Catalytic Partial Oxidation Reactions of Alkanes on Rhodium Surfaces. Journal of the American Chemical Society, 2008, 130, 15796-15797.	6.6	17
191	Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15241-15246.	3.3	219
192	Infrared Spectroscopy Characterization of the Chemistry of C4Hydrocarbons on Pt(111) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2007, 111, 10062-10072.	1.5	40
193	Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces. Physical Chemistry Chemical Physics, 2007, 9, 3830.	1.3	56
194	Thermal Chemistry of 1-Methyl-1-cyclohexene and Methylene Cyclohexane on Pt(111) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2007, 111, 18367-18375.	1.5	15
195	Thermal Chemistry of Water Adsorbed on Clean and Oxygen-Predosed V(100) Single-Crystal Surfaces. Journal of Physical Chemistry C, 2007, 111, 13570-13578.	1.5	15
196	Factors Controlling Adsorption Equilibria from Solution onto Solid Surfaces:  The Uptake of Cinchona Alkaloids on Platinum Surfaces. Journal of the American Chemical Society, 2007, 129, 16083-16090.	6.6	64
197	Oxygen Adsorption and Oxide Formation on V(100) Surfaces. Journal of Physical Chemistry C, 2007, 111, 6033-6040.	1.5	18
198	Effect of ceria–zirconia ratio on the interaction of CO with PdO/Al2O3–(Cex–Zr1â^'x)O2 catalysts prepared by sol–gel method. Applied Catalysis B: Environmental, 2007, 69, 219-225.	10.8	15

#	Article	IF	CITATIONS
199	Mechanistic Details of Atomic Layer Deposition (ALD) Processes. Journal of the Korean Physical Society, 2007, 51, 1063.	0.3	25
200	Stepwise Formation and Characterization of Covalently Linked Multiporphyrinâ^'Imide Architectures on Si(100). Journal of the American Chemical Society, 2006, 128, 6965-6974.	6.6	58
201	Effect of Protonation on the Conformation of Cinchonidine. Journal of the American Chemical Society, 2006, 128, 15594-15595.	6.6	69
202	Thermal Chemistry of 1-Methyl-1-Cyclopentene and Methylene Cyclopentane on Pt(111) Surfaces:Â Evidence for Double-Bond Isomerization. Journal of Physical Chemistry B, 2006, 110, 9650-9659.	1.2	22
203	Surface Chemistry in the Atomic Layer Deposition of TiN Films from TiCl4 and Ammonia. Journal of Physical Chemistry B, 2006, 110, 13491-13498.	1.2	79
204	Chiral Templating of Surfaces:Â Adsorption of (S)-2-Methylbutanoic Acid on Pt(111) Single-Crystal Surfaces. Journal of the American Chemical Society, 2006, 128, 8890-8898.	6.6	55
205	Competitive Chemisorption between Pairs of Cinchona Alkaloids and Related Compounds from Solution onto Platinum Surfaces. Journal of the American Chemical Society, 2006, 128, 16414-16415.	6.6	56
206	Xenon as a probe for minority sites on solid surfaces. Nature Materials, 2006, 5, 489-493.	13.3	11
207	Organic chemistry on solid surfaces. Surface Science Reports, 2006, 61, 229-281.	3.8	243
208	Molecular beam measurements and Monte Carlo simulations of the kinetics of N2O decomposition on Rh(111) single-crystal surfaces. Journal of Chemical Physics, 2006, 125, 074705.	1.2	9
209	Characterization of bifunctional PtSn/H[Al]ZSM5 catalysts: a comparison between two impregnation strategies. Journal of Molecular Catalysis A, 2005, 228, 227-232.	4.8	25
210	Tuning selectivity in hydrocarbon conversion catalysis. Journal of Molecular Catalysis A, 2005, 228, 21-26.	4.8	16
211	Mechanisms of hydrocarbon conversion reactions on heterogeneous catalysts: analogies with organometallic chemistry. Topics in Catalysis, 2005, 34, 129-141.	1.3	21
212	The surface chemistry of heterogeneous catalysis: Mechanisms, selectivity, and active sites. Chemical Record, 2005, 5, 133-144.	2.9	44
213	Role of the Solvent in the Adsorptionâ^'Desorption Equilibrium of Cinchona Alkaloids between Solution and a Platinum Surface:Â Correlations among Solvent Polarity, Cinchona Solubility, and Catalytic Performance. Journal of Physical Chemistry B, 2005, 109, 406-414.	1.2	85
214	Thermal Chemistry of C4Hydrocarbons on Pt(111):Â Mechanism for Double-Bond Isomerization. Journal of Physical Chemistry B, 2005, 109, 2745-2753.	1.2	59
215	Selectivity in Platinum-Catalyzed cisâ~'trans Carbonâ~'Carbon Double-Bond Isomerization. Journal of the American Chemical Society, 2005, 127, 12174-12175.	6.6	64
216	Enantioselectivity of Adsorption Sites Created by Chiral 2-Butanol Adsorbed on Pt(111) Single-Crystal Surfaces. Journal of Physical Chemistry B, 2005, 109, 12920-12926.	1.2	70

#	Article	IF	CITATIONS
217	Adsorption Characteristics of Tripodal Thiol-Functionalized Porphyrins on Gold. Journal of Physical Chemistry B, 2005, 109, 23963-23971.	1.2	45
218	Structural and Electron-Transfer Characteristics of Carbon-Tethered Porphyrin Monolayers on Si(100). Journal of Physical Chemistry B, 2005, 109, 6323-6330.	1.2	43
219	Mechanistic requirements for catalytic active sites. Journal of Physics Condensed Matter, 2004, 16, S2299-S2310.	0.7	12
220	In Situ Reflection–Absorption Infrared Spectroscopy at the Liquid–Solid Interface: Decomposition of Organic Molecules on Polycrystalline Platinum Substrates. Catalysis Letters, 2004, 96, 5-12.	1.4	16
221	In situ characterization of the adsorption of cinchona chiral modifiers on platinum surfaces. Journal of Molecular Catalysis A, 2004, 216, 199-207.	4.8	63
222	Regiospecificity in deuterium labeling determined by mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 1366-1373.	1.2	14
223	Thermal Chemistry of Iodomethane on Ni(110). 2. Effect of Coadsorbed Oxygen. Journal of Physical Chemistry B, 2004, 108, 16226-16232.	1.2	13
224	Thermal Chemistry of Iodomethane on Ni(110). 1. Clean and Hydrogen-Predosed Surfaces. Journal of Physical Chemistry B, 2004, 108, 16220-16225.	1.2	22
225	Characterization of Self-Assembled Monolayers of Porphyrins Bearing Multiple Thiol-Derivatized Rigid-Rod Tethers. Journal of the American Chemical Society, 2004, 126, 11944-11953.	6.6	72
226	Infrared Study of CO Adsorbed on Pd/Al2O3â^'ZrO2. Effect of Zirconia Added by Impregnation. Langmuir, 2004, 20, 10490-10497.	1.6	65
227	Structural and Electron-Transfer Characteristics of O-, S-, and Se-Tethered Porphyrin Monolayers on Si(100). Journal of the American Chemical Society, 2004, 126, 15603-15612.	6.6	63
228	Title is missing!. Catalysis Letters, 2003, 88, 95-104.	1.4	22
229	Surface Chemistry of Hydrocarbon Fragments on Transition Metals: Towards Understanding Catalytic Processes. Catalysis Letters, 2003, 91, 1-10.	1.4	66
230	Thermal chemistry of diiodomethane on Ni(110) surfaces II. Effect of coadsorbed oxygen. Surface Science, 2003, 547, 299-314.	0.8	16
231	Thermal chemistry of diiodomethane on Ni(110) surfaces I. Clean and hydrogen-covered. Surface Science, 2003, 547, 284-298.	0.8	22
232	The reactivity of hydroxyl groups toward ammonia on Ni() surfaces. Surface Science, 2003, 524, 1-14.	0.8	18
233	The surface chemistry of hydrocarbon partial oxidation catalysis. Catalysis Today, 2003, 81, 149-157.	2.2	49
234	Vibrational Band Assignments for the Chiral Modifier Cinchonidine:Â Implications for Surface Studies. Journal of Physical Chemistry B, 2003, 107, 14365-14373.	1.2	112

#	Article	IF	CITATIONS
235	In Situ Characterization of Adsorbates in Solidâ 'Liquid Interfaces by Reflectionâ 'Absorption Infrared Spectroscopy. Langmuir, 2003, 19, 3371-3376.	1.6	63
236	Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices. Journal of the American Chemical Society, 2003, 125, 505-517.	6.6	204
237	Thermal Chemistry of 2-Propanol and 2-Propyl Iodide on Clean and Oxygen-Pretreated Ni(100) Single-Crystal Surfaces. Journal of Physical Chemistry B, 2003, 107, 11133-11141.	1.2	37
238	Adsorption and Thermal Conversion of 2-Iodoethanol on Ni(100) Surfaces:Â Hydroxyalkyls and Oxametallacycles as Key Intermediates during the Catalytic Oxidation of Hydrocarbons. Journal of Physical Chemistry B, 2003, 107, 9047-9055.	1.2	17
239	Effect of Coadsorbed Oxygen on the Chemistry of Ammonia over Ni(110) Single-Crystal Surfaces. Journal of Physical Chemistry B, 2003, 107, 502-511.	1.2	24
240	Switching of Alcohol Oxidation Mechanism on Nickel Surfaces by Fluorine Substitution. Journal of the American Chemical Society, 2003, 125, 10776-10777.	6.6	10
241	On the mechanism for the reduction of nitrogen monoxide on Rh(111) single-crystal surfaces. Physical Chemistry Chemical Physics, 2003, 5, 646-654.	1.3	33
242	Effect of coverage and temperature on the kinetics of nitrogen desorption from Rh(111) surfaces. Journal of Chemical Physics, 2002, 116, 1128-1136.	1.2	49
243	Infrared and molecular beam studies of chemical reactions on solid surfaces. International Reviews in Physical Chemistry, 2002, 21, 433-471.	0.9	108
244	Outstanding Mechanistic Questions in Heterogeneous Catalysis. Journal of Physical Chemistry B, 2002, 106, 4043-4052.	1.2	130
245	Kinetics of Chemical Reactions on Solid Surfaces:Â Deviations from Conventional Theory. Accounts of Chemical Research, 2002, 35, 129-136.	7.6	72
246	Ethylene Adsorption on Platinum:Â Kinetics, Bonding, and Relevance to Catalysis. Journal of the American Chemical Society, 2002, 124, 10982-10983.	6.6	33
247	The surface chemistry of hydrocarbon fragments on transition metals: towards understanding catalytic processes. Molecular Physics, 2002, 100, 3065-3073.	0.8	22
248	The surface chemistry of catalysis: new challenges ahead. Surface Science, 2002, 500, 947-965.	0.8	62
249	Neopentyl iodide on Pt(111). Surface Science, 2002, 501, 16-30.	0.8	12
250	Neopentyl iodide on Pt() I. Adsorption and thermal decomposition. Surface Science, 2002, 501, 1-15.	0.8	12
251	Kinetic study on the selective catalytic oxidation of 2-propanol to acetone over nickel foils. Journal of Molecular Catalysis A, 2002, 177, 215-235.	4.8	23
252	Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective. Applied Catalysis A: General, 2002, 229, 75-91.	2.2	74

#	Article	IF	CITATIONS
253	1,1- and 1,3-Diiodo Neopentanes on Pt(111): Intermediates during Hydrocarbon Catalytic Conversion Reactions. Journal of Catalysis, 2002, 208, 345-358.	3.1	17
254	Thermal Chemistry of C3 Allyl Groups on Pt(111). Journal of Physical Chemistry B, 2001, 105, 1003-1011.	1.2	40
255	Evidence for the Formation of Nitrogen Islands on Rhodium Surfaces. Journal of Physical Chemistry B, 2001, 105, 7771-7774.	1.2	41
256	Direct Evidence for the Formation of a Câ^'O Bond between Adsorbed Species. Journal of Physical Chemistry B, 2001, 105, 2257-2259.	1.2	24
257	Thermal Chemistry of C3 Metallacycles on Pt(111) Surfaces. Journal of Physical Chemistry B, 2001, 105, 5968-5978.	1.2	29
258	Adsorption Geometry of Modifiers as Key in Imparting Chirality to Platinum Catalysts. Journal of the American Chemical Society, 2001, 123, 11115-11116.	6.6	171
259	Surface intermediates during the catalytic reduction of NO on rhodium catalysts: a kinetic inference. Journal of Molecular Catalysis A, 2001, 167, 23-31.	4.8	38
260	NO+CO+O2 Reaction Kinetics on Rh(111): A Molecular Beam Study. Journal of Catalysis, 2001, 200, 270-287.	3.1	54
261	Probing catalytic reactions at surfaces. Progress in Surface Science, 2001, 69, 1-98.	3.8	186
262	Evidence for an N2O intermediate in the catalytic reduction of NO to N2 on rhodium surfaces. Chemical Physics Letters, 2000, 332, 209-214.	1.2	94
263	The thermal activation of propyl groups on Pt(111). Catalysis Letters, 2000, 69, 117-128.	1.4	48
264	Design and characterization of collimated effusive gas beam sources: Effect of source dimensions and backing pressure on total flow and beam profile. Review of Scientific Instruments, 2000, 71, 3869.	0.6	34
265	Propylene on Pt(111). Surface Science, 2000, 457, 71-88.	0.8	103
266	Propylene on Pt(111). Surface Science, 2000, 457, 89-108.	0.8	97
267	The Chemistry of Alkyl Iodides on Copper Surfaces. 1. Adsorption Geometryâ€. Journal of Physical Chemistry B, 2000, 104, 3008-3016.	1.2	49
268	Transient Kinetics during the Isothermal Reduction of NO by CO on Rh(111) As Studied with Effusive Collimated Molecular Beamsâ€. Journal of Physical Chemistry B, 2000, 104, 3194-3203.	1.2	55
269	The Chemistry of Alkyl Iodides on Copper Surfaces. 2. Influence of Surface Structure on Reactivityâ€. Journal of Physical Chemistry B, 2000, 104, 3017-3027.	1.2	71
270	Role of adsorbed nitrogen in the catalytic reduction of NO on rhodium surfaces. Journal of Chemical Physics, 1999, 111, 8088-8097.	1.2	71

#	Article	IF	CITATIONS
271	Double-bond activation in unsaturated aldehydes: conversion of acrolein to propene and ketene on Pt(111) surfaces. Journal of Molecular Catalysis A, 1999, 138, 237-240.	4.8	49
272	Partial oxidation of hydrocarbons on nickel: from surface science mechanistic studies to catalysis1Presented at the 9th International Symposium on Relations Between Homogeneous and Heterogeneous Catalysis.1. Journal of Molecular Catalysis A, 1999, 146, 13-23.	4.8	34
273	Surface-induced rotational isomerism within solid 1,3-diiodopropane thin films. Chemical Physics Letters, 1999, 309, 321-326.	1.2	3
274	A Molecular Beam Study of the Kinetics of the Catalytic Reduction of NO by CO on Rh(111) Single-Crystal Surfaces. Journal of Catalysis, 1999, 186, 387-404.	3.1	60
275	Adsorption and thermal chemistry of acrolein and crotonaldehyde on Pt(111) surfaces. Surface Science, 1999, 430, 99-115.	0.8	115
276	Mechanistic Changes in the Conversion of Ethylene to Ethylidyne on Transition Metals Induced by Changes in Surface Coverages. Journal of the American Chemical Society, 1999, 121, 2236-2243.	6.6	76
277	Thermal Chemistry of 1,6-Diiodohexane on Ni(100) Single-Crystal Surfaces:  Mimicking Cyclization Reactions. Journal of Physical Chemistry A, 1999, 103, 2312-2320.	1.1	30
278	Isothermal Kinetic Study of the Decomposition of Nitric Oxide over Rh(111) Surfaces. Journal of Catalysis, 1998, 175, 316-327.	3.1	40
279	Hydroxylation of NiO films: the effect of water and ion bombardment during the oxidation of nickel foils with O2 under vacuum. Surface Science, 1998, 397, 34-47.	0.8	58
280	Coadsorption of Sulfur and Carbon Monoxide on Platinum Single-Crystal Surfaces Studied by Scanning Tunneling Microscopyâ€. Langmuir, 1998, 14, 1312-1319.	1.6	14
281	Selectivity among Dehydrogenation Steps for Alkyl Groups on Metal Surfaces:Â Comparison between Nickel and Platinumâ€. Langmuir, 1998, 14, 1320-1327.	1.6	41
282	The Surface Chemistry of Hydrocarbons on Transition Metal Surfaces: A Critical Review. Israel Journal of Chemistry, 1998, 38, 293-311.	1.0	36
283	Isothermal study of the kinetics of carbon monoxide oxidation on Pt(111): Rate dependence on surface coverages. Journal of Chemical Physics, 1997, 106, 4204-4215.	1.2	85
284	Change in Reaction Pathway Induced by Deuteration:Â Thermal Decomposition of Neopentyl Groups on Pt(111) Surfaces. Journal of the American Chemical Society, 1997, 119, 1169-1170.	6.6	28
285	Isothermal Kinetic Measurements for the Hydrogenation of Ethylene on Pt(111) under Vacuum:Â Significance of Weakly-Bound Species in the Reaction Mechanism. Journal of Physical Chemistry B, 1997, 101, 396-408.	1.2	108
286	Thermal Chemistry of Dihalopropanes on Ni(100) Single-Crystal Surfaces:Â Formation of Cyclopropane, Propene, and Propane. Journal of Physical Chemistry B, 1997, 101, 1006-1013.	1.2	40
287	Surface Defect Characterization in Oxygen-Dosed Nickel Surfaces and in NiO Thin Films by CO Adsorptionâ^'Desorption Experiments. Journal of Physical Chemistry B, 1997, 101, 9069-9076.	1.2	48
288	The use of low-energy ion scattering spectroscopy for the quantitative determination of adsorption sites in surface chemistry studies. Surface Science, 1997, 385, 294-309.	0.8	22

#	Article	IF	CITATIONS
289	Thermal Conversion of 2-Propyl Iodide on O/Ni(100): Changes in Product Distribution with Varying Oxygen Coverages. Journal of Catalysis, 1997, 169, 365-381.	3.1	48
290	On the Mechanism for the Hydrogenation of Olefins on Transition-Metal Surfaces: The Chemistry of Ethylene on Pt(111). Langmuir, 1996, 12, 88-94.	1.6	166
291	On the Mechanism of the H–D ExchangeReaction in Ethane over Platinum Catalysts. Journal of Catalysis, 1996, 159, 127-139.	3.1	53
292	Influence of argon ion bombardment on the oxidation of nickel surfaces. Surface Science, 1996, 369, 217-230.	0.8	49
293	Reflection absorption infrared spectroscopy and kinetic studies of the reactivity of ethylene on Pt(111) surfaces. Surface Science, 1996, 368, 371-376.	0.8	95
294	The Thermal Chemistry of Neopentyl Iodide on Ni(100) Surfaces: Selectivity between α-Câ~'H and γ-Câ~'H and between Câ~'H and Câ~'C Bond-Scission Steps in Chemisorbed Neopentyl Moieties. Journal of the American Chemical Society, 1996, 118, 12738-12746.	6.6	38
295	In Situ NEXAFS Characterization of Surface Intermediates. Series on Synchrotron Radiation Techniques and Applications, 1996, , 362-371.	0.2	2
296	A Surface Science Study of the Hydrogenation and Dehydrogenation Steps in the Interconversion of C6Cyclic Hydrocarbons on Ni(100). Journal of Catalysis, 1996, 164, 82-93.	3.1	55
297	Kinetic evidence for the dependence of surface reaction rates on the distribution of reactants on the surface. Journal of Chemical Physics, 1996, 104, 8825-8828.	1.2	50
298	Mechanistic studies of the thermal decomposition of metal carbonyls on Ni(100) surfaces in connection with chemical vapor deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 415-424.	0.9	31
299	Thermal Reactions of Alkyl Iodides on Ni(100) Single Crystal Surfaces. Journal of the American Chemical Society, 1995, 117, 9749-9755.	6.6	64
300	The role of hydrogen-deuterium exchange reactions in the conversion of ethylene to ethylidyne on Pt(111). Surface Science, 1995, 344, 77-84.	0.8	47
301	The surface chemistry of ethyl iodide on hydrogen-covered Ni(100) surfaces. Surface Science, 1995, 322, 140-150.	0.8	38
302	An Organometallic Guide to the Chemistry of Hydrocarbon Moieties on Transition Metal Surfaces. Chemical Reviews, 1995, 95, 2651-2693.	23.0	430
303	Adsorption and Thermal Decomposition of Propyl Iodides on Ni(100) Surfaces. Langmuir, 1994, 10, 2640-2646.	1.6	48
304	Molecular approach to the study of the mechanisms of alkyl reactions on metal surfaces. Journal of Molecular Catalysis, 1994, 86, 221-242.	1.2	64
305	Evidence for ligand exchange in iron pentacarbonyl adsorbed on Ni(100) surfaces. Surface Science, 1994, 315, 40-50.	0.8	18
306	On the Mechanism for the Conversion of Ethylene to Ethylidyne on Metal Surfaces: Vinyl Iodide on Pt(111). Journal of the American Chemical Society, 1994, 116, 4881-4887.	6.6	86

#	Article	IF	CITATIONS
307	The thermal chemistry of ethyl iodide chemisorbed on Ni(100). Surface Science, 1993, 289, 255-266.	0.8	61
308	Evidence for a new reaction in organic/metal systems: elimination of methyl groups from alkyl species chemisorbed on nickel surfaces. Journal of the American Chemical Society, 1993, 115, 5851-5852.	6.6	23
309	Chemistry of 1-iodopropane on copper(110): formation, bonding, and reactions of adsorbed propyl groups. Journal of the American Chemical Society, 1993, 115, 308-314.	6.6	73
310	Methyl iodide thermal reactions when chemisorbed on nickel(100) surfaces. [Erratum to document cited in CA117(16):158421g]. Langmuir, 1993, 9, 880-880.	1.6	17
311	Determination of the activation energy for the dissociation of the carbon–iodine bond in methyl iodide adsorbed on Ni(100) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 404-405.	0.9	52
312	Study of the surface chemistry of methyl iodide coadsorbed with hydrogen on Pt(111). Surface Science, 1992, 262, 335-350.	0.8	67
313	Preparation and reactivity of alkyl groups adsorbed on metal surfaces. Accounts of Chemical Research, 1992, 25, 260-265.	7.6	195
314	Methyl iodide thermal reactions when chemisorbed on nickel(100) surfaces. Langmuir, 1992, 8, 2090-2097.	1.6	51
315	Evidence for a new low-temperature methane formation pathway upon coadsorption of hydrogen with methyl iodide on nickel(100) surfaces. Journal of the American Chemical Society, 1992, 114, 10645-10646.	6.6	19
316	Mechanism for the decomposition of iron pentacarbonyl on Pt(111): evidence for iron tetracarbonyl and iron tricarbonyl intermediates. Surface Science, 1991, 255, 280-288.	0.8	47
317	A kinetic study of the chemical vapor deposition of iron films using iron pentacarbonyl. Langmuir, 1991, 7, 1188-1191.	1.6	36
318	Reversibility of C1 hydrogenation-dehydrogenation reactions on platinum surfaces under vacuum. Langmuir, 1991, 7, 1998-1999.	1.6	51
319	Mechanism for the catalytic exchange of methane with deuterium on Pt(111) surfaces. Catalysis Letters, 1991, 11, 95-104.	1.4	38
320	Mechanisms for ethylene hydrogenation and hydrogen-deuterium exchange over platinum(111). The Journal of Physical Chemistry, 1990, 94, 5090-5095.	2.9	101
321	Study of the surface chemistry of ethyl groups on platinum (111) by using partially deuterated ethyl iodide. The Journal of Physical Chemistry, 1990, 94, 8350-8355.	2.9	87
322	Displacement of carbon monoxide chemisorbed on metals by hydrogen. Journal of the American Chemical Society, 1990, 112, 5695-5697.	6.6	27
323	Discovery of a tilted form of benzene chemisorbed on Pd(111): As NEXAFS and photoemission investigation. Surface Science, 1990, 232, 259-265.	0.8	85
324	A thermal desorption and xâ€ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 640-645.	0.9	40

#	Article	IF	CITATIONS
325	Differential-polarization dual-beam FT-IR spectrometer for surface analysis. Talanta, 1989, 36, 125-131.	2.9	14
326	Determination of the mechanism for ethylidyne formation from chemisorbed ethylene on transition metal surfaces. Journal of the American Chemical Society, 1989, 111, 4240-4244.	6.6	90
327	Direct observation of .betahydride elimination reactions on metal surfaces. Journal of the American Chemical Society, 1989, 111, 8744-8745.	6.6	78
328	Formation and thermal decomposition of ethyl groups on transition metal surfaces: Ethyl iodide on Pt(111). Surface Science, 1989, 219, 453-466.	0.8	127
329	Ethylidyne formation rates on the Pt(111) surface. Chemical Physics Letters, 1988, 151, 227-229.	1.2	32
330	Adsorbed sulfhydryl (SH) on the molybdenum(100) surface. Langmuir, 1988, 4, 118-120.	1.6	37
331	Unexpected hydrogen induced displacement of chemisorbed CO from the Ni(100) surface. Journal of Chemical Physics, 1988, 89, 590-596.	1.2	23
332	Fluorescence Yield Near Edge X-Ray Absorption Fine Structure Above the Carbon K Edge: A New Method for Characterizing Adsorbed Intermediates and Surface Reaction Rates in the Presence of Reactive Environments. Studies in Surface Science and Catalysis, 1988, 38, 835-843.	1.5	1
333	Surface science studies of catalysis: classification of reactions. Accounts of Chemical Research, 1986, 19, 24-31.	7.6	88
334	Hydrogenation of chemisorbed ethylene on clean, hydrogen, and ethylidyne covered platinum (111) crystal surfaces. Surface Science, 1986, 167, 150-166.	0.8	131
335	A comparison of gas-phase and electrochemical hydrogenation of ethylene at platinum surfaces. Journal of the American Chemical Society, 1985, 107, 5910-5920.	6.6	95
336	Surface structure and temperature dependence of light-alkane skeletal rearrangement reactions catalyzed over platinum single-crystal surfaces. Journal of the American Chemical Society, 1982, 104, 7453-7461.	6.6	110
337	Chiral Modification of Catalytic Surfaces. , 0, , 113-140.		16